ISOTOPEST | ISOtope TOols for assessing PESticide faTe in the environment

Summary
Assessing the source and fate of pesticides in the environment is vital for improving European water management policies and remediation actions. Although compound specific isotope analysis (CSIA) has proved to be a valuable tool to identify sources and track and quantify pollutant degradation in environmental systems, its application to pesticides is still emerging. There are currently some analytical challenges that restrict the possibilities to exploit the full potential of CSIA in pesticides for environmental applications, mainly related with low pesticide concentrations in environmental matrices. The first task of this project aims to overcome these barriers by optimizing extraction and analytical methods for measuring isotope ratios in an unexplored pesticide of high environmental concern: the organochlorine insecticide methoxychlor. Understanding the processes of transformation of pesticides and their associate isotope fractionations is crucial to give a sound base on CSIA application in real case studies. Nevertheless, the database of isotope fractionations associated to different transformation reactions for each pesticide is extremely incomplete. The second task of this project aims to increase this database by performing laboratory experiments for assessing biodegradation of methoxychlor and the herbicide atrazine. Finally, to take the next step and bring CSIA of pesticides to the field, the third task of this project is focused on application of CSIA in two contaminated sites for assessing the fate of the target pesticides (atrazine and methoxychlor) and their metabolites. This will provide a further demonstration of the options of CSIA in the evaluation of strategies for natural or induced attenuation, and to trace the sources, sinks and fate of pesticides in the environment. This project will thus contribute to the competitiveness of Europe in environmental monitoring, risk assessment and contamination mitigating concepts of pesticides.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/837873
Start date: 01-11-2019
End date: 31-10-2021
Total budget - Public funding: 160 932,48 Euro - 160 932,00 Euro
Cordis data

Original description

Assessing the source and fate of pesticides in the environment is vital for improving European water management policies and remediation actions. Although compound specific isotope analysis (CSIA) has proved to be a valuable tool to identify sources and track and quantify pollutant degradation in environmental systems, its application to pesticides is still emerging. There are currently some analytical challenges that restrict the possibilities to exploit the full potential of CSIA in pesticides for environmental applications, mainly related with low pesticide concentrations in environmental matrices. The first task of this project aims to overcome these barriers by optimizing extraction and analytical methods for measuring isotope ratios in an unexplored pesticide of high environmental concern: the organochlorine insecticide methoxychlor. Understanding the processes of transformation of pesticides and their associate isotope fractionations is crucial to give a sound base on CSIA application in real case studies. Nevertheless, the database of isotope fractionations associated to different transformation reactions for each pesticide is extremely incomplete. The second task of this project aims to increase this database by performing laboratory experiments for assessing biodegradation of methoxychlor and the herbicide atrazine. Finally, to take the next step and bring CSIA of pesticides to the field, the third task of this project is focused on application of CSIA in two contaminated sites for assessing the fate of the target pesticides (atrazine and methoxychlor) and their metabolites. This will provide a further demonstration of the options of CSIA in the evaluation of strategies for natural or induced attenuation, and to trace the sources, sinks and fate of pesticides in the environment. This project will thus contribute to the competitiveness of Europe in environmental monitoring, risk assessment and contamination mitigating concepts of pesticides.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018