NanoBragg | Nanofiber-based atomic Bragg structures

Summary
In this proposal, we want to create an atomic Bragg structure by carefully adjusting the inter-atomic spacing between nanofiber-trapped atoms to approach a Bragg resonance. The structure allows to engineer the atom-nanofiber coupling for quantum-information applications. We hence build on the recent rapid progress of a novel light-matter interface based on an atomic ensemble trapped in an optical lattice created by the evanescent field of nanofiber-guided light. The small effective area of the evanescently guided light field results in a large optical depth per atom on the few-percent level. The number of atoms can easily reach several thousands for nanofibers with a length of few millimeres. In combination with the proven coherence properties, it is an ideal candidate for the implementation of fundamental building blocks for quantum information processing (QIP), such as efficient fiber-integrated quantum memories for light and optical nonlinearities on the few-photon level. However, in view of recent discoveries related to the coupling between polarization and propagation direction of the nanofiber modes, we believe that the true potential of the nanofiber system can only be unleashed by developing specialized protocols. Those protocols need to take the extraordinary polarization properties of the nanofiber-guided modes and the multilevel structure of the atoms into account. Specialized protocols will benefit from the enhanced coupling of the atoms to the nanofiber provided by the Bragg structure. We will characterize the transmission and reflection properties of the nanofiber-coupled atomic Bragg structure, with special attention to polarization effects. Subsequently we will demonstrate how the Bragg resonance can be used to enhance the spontaneous emission of the atomic array into nanofiber-guides modes with a desired propagation direction and how this significantly improves the success rate of the DLCZ quantum memory protocol.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/658556
Start date: 01-09-2015
End date: 31-08-2017
Total budget - Public funding: 178 156,80 Euro - 178 156,00 Euro
Cordis data

Original description

In this proposal, we want to create an atomic Bragg structure by carefully adjusting the inter-atomic spacing between nanofiber-trapped atoms to approach a Bragg resonance. The structure allows to engineer the atom-nanofiber coupling for quantum-information applications. We hence build on the recent rapid progress of a novel light-matter interface based on an atomic ensemble trapped in an optical lattice created by the evanescent field of nanofiber-guided light. The small effective area of the evanescently guided light field results in a large optical depth per atom on the few-percent level. The number of atoms can easily reach several thousands for nanofibers with a length of few millimeres. In combination with the proven coherence properties, it is an ideal candidate for the implementation of fundamental building blocks for quantum information processing (QIP), such as efficient fiber-integrated quantum memories for light and optical nonlinearities on the few-photon level. However, in view of recent discoveries related to the coupling between polarization and propagation direction of the nanofiber modes, we believe that the true potential of the nanofiber system can only be unleashed by developing specialized protocols. Those protocols need to take the extraordinary polarization properties of the nanofiber-guided modes and the multilevel structure of the atoms into account. Specialized protocols will benefit from the enhanced coupling of the atoms to the nanofiber provided by the Bragg structure. We will characterize the transmission and reflection properties of the nanofiber-coupled atomic Bragg structure, with special attention to polarization effects. Subsequently we will demonstrate how the Bragg resonance can be used to enhance the spontaneous emission of the atomic array into nanofiber-guides modes with a desired propagation direction and how this significantly improves the success rate of the DLCZ quantum memory protocol.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)