NAMESTRANSIS | Nanomechanical spin-to-photon transduction in silicon

Summary
The spin of an electron trapped in the binding potential of a phosphorous donor has recently shown some of the longest quantum coherence times in solid state and is now regarded as one of the most promising materials for quantum computing. However, current readout techniques rely on single-electron transistors for which millikelvin temperatures and nanoelectronic connections are needed.

We propose to establish a new transduction mechanism that coherently couples silicon spin qubits to optical photons at the quantum level and hence provides optical addressing at 4K temperatures. Central to our proposed quantum transducer is a nanomechanical resonator, that acts as a conduit of quantum information. We will realize sufficiently strong interactions between the resonator and both spins and photons by exploiting nanophotonic systems, which can confine light fields and mechanical motion at the nanoscale.

Our objectives are to show: (i) coupling between the spin and the mechanics by inducing spin-dependent mechanical frequency shift and read this out optically, and (ii) pulsed backaction-evading measurements of nanomechanical motion, establishing a fast single-shot qubit readout method, and allowing the creation of non-classical mechanical states through projective measurement.

Doing this we create a unique three-way hybrid quantum system: spin qubit–mechanical resonator–optical cavity. The study of this new “spin-optomechanics” system is expected to both contribute to the exploration of the size-frontiers of quantum mechanics and lead to advancements in the field of quantum computation as well as ultra-sensitive magnetometry.

The project allows the applicant to gain crucial expertise in nano-optomechanics and nanophotonics. Combined with his previous experience on spin qubits, the proposed research and the excellent scientific host environment will arm him with a unique skill set that will position him well for a future research position in Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/707364
Start date: 01-03-2016
End date: 28-02-2018
Total budget - Public funding: 165 598,80 Euro - 165 598,00 Euro
Cordis data

Original description

The spin of an electron trapped in the binding potential of a phosphorous donor has recently shown some of the longest quantum coherence times in solid state and is now regarded as one of the most promising materials for quantum computing. However, current readout techniques rely on single-electron transistors for which millikelvin temperatures and nanoelectronic connections are needed.

We propose to establish a new transduction mechanism that coherently couples silicon spin qubits to optical photons at the quantum level and hence provides optical addressing at 4K temperatures. Central to our proposed quantum transducer is a nanomechanical resonator, that acts as a conduit of quantum information. We will realize sufficiently strong interactions between the resonator and both spins and photons by exploiting nanophotonic systems, which can confine light fields and mechanical motion at the nanoscale.

Our objectives are to show: (i) coupling between the spin and the mechanics by inducing spin-dependent mechanical frequency shift and read this out optically, and (ii) pulsed backaction-evading measurements of nanomechanical motion, establishing a fast single-shot qubit readout method, and allowing the creation of non-classical mechanical states through projective measurement.

Doing this we create a unique three-way hybrid quantum system: spin qubit–mechanical resonator–optical cavity. The study of this new “spin-optomechanics” system is expected to both contribute to the exploration of the size-frontiers of quantum mechanics and lead to advancements in the field of quantum computation as well as ultra-sensitive magnetometry.

The project allows the applicant to gain crucial expertise in nano-optomechanics and nanophotonics. Combined with his previous experience on spin qubits, the proposed research and the excellent scientific host environment will arm him with a unique skill set that will position him well for a future research position in Europe.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)