Summary
Stretchable microsupercapacitors (MSCs) can operate in multiple mechanical distortions including stretching, bending, twisting, and compression. These mechanical adaptabilities are essential for powering wearable electronics and implantable biomedical devices. Recent progress in the stretchable supercapacitor field primarily emphasizes on the electrode materials and their design concept. In the search of outstanding electrode material, we have seen consumer-grade carbon-based MSC electrodes would be benefitted from a thin layer of diamond (sp3-hybridized carbon) coating as diamond possesses wide electrochemical (EC) potential window, a low and stable background current, and exceptional stability in a wide range of corrosive media. However, most of the growth techniques like chemical vapor deposition and atomic layer deposition support the diamond deposition on any solid hard substrate (such as Si, Mo, Ta, etc.), and also the gas phase growth temperature is too high to deposit diamond on any flexible substrate. On the other hand, recently, large scale, facile and one-step process for the production of flexible graphene-based porous nanomaterial called laser-induced graphene (LIG) has been investigated worldwide and regarded as a suitable platform to build EC energy storage devices. Therefore, we believe that in situ bonding between the flexible porous graphene networks with nanocrystalline diamond using a single-step lasing process, can provide a major breakthrough in the field of flexible wearable and portable electronic device technology. To utilize the dual advantage of both sp2 and sp3 bonded carbon, herein, we propose a simple strategy to synthesize nanostructured carbon hybrid where conductive nanodiamonds will be decorated between the flexible three-dimensional porous network of sp2 carbon (LIG). In the application scenario, the carbon hybrid then transferred to a transparent and stretchable silicone rubber substrate to obtain all-solid-state planar MSCs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101024736 |
Start date: | 01-04-2022 |
End date: | 31-03-2024 |
Total budget - Public funding: | 144 980,64 Euro - 144 980,00 Euro |
Cordis data
Original description
Stretchable microsupercapacitors (MSCs) can operate in multiple mechanical distortions including stretching, bending, twisting, and compression. These mechanical adaptabilities are essential for powering wearable electronics and implantable biomedical devices. Recent progress in the stretchable supercapacitor field primarily emphasizes on the electrode materials and their design concept. In the search of outstanding electrode material, we have seen consumer-grade carbon-based MSC electrodes would be benefitted from a thin layer of diamond (sp3-hybridized carbon) coating as diamond possesses wide electrochemical (EC) potential window, a low and stable background current, and exceptional stability in a wide range of corrosive media. However, most of the growth techniques like chemical vapor deposition and atomic layer deposition support the diamond deposition on any solid hard substrate (such as Si, Mo, Ta, etc.), and also the gas phase growth temperature is too high to deposit diamond on any flexible substrate. On the other hand, recently, large scale, facile and one-step process for the production of flexible graphene-based porous nanomaterial called laser-induced graphene (LIG) has been investigated worldwide and regarded as a suitable platform to build EC energy storage devices. Therefore, we believe that in situ bonding between the flexible porous graphene networks with nanocrystalline diamond using a single-step lasing process, can provide a major breakthrough in the field of flexible wearable and portable electronic device technology. To utilize the dual advantage of both sp2 and sp3 bonded carbon, herein, we propose a simple strategy to synthesize nanostructured carbon hybrid where conductive nanodiamonds will be decorated between the flexible three-dimensional porous network of sp2 carbon (LIG). In the application scenario, the carbon hybrid then transferred to a transparent and stretchable silicone rubber substrate to obtain all-solid-state planar MSCs.Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping