Summary
I propose the project Galaxy Sizes as Tracers of Dark Matter (GALSIZE) to be supervised by Prof. Courteau at Queen’s University in Kingston (Canada, Third Country for the outgoing phase) and by Prof. Knapen at the Instituto de Astrofísica de Canarias (IAC, Tenerife, Spain, beneficiary institution and host for the incoming phase). The main scientific goals are to (S01) establish a new paradigm of galaxy data-model comparisons, developing a definitive theory of disk formation based on galaxy sizes; (S02) characterize the nature of, and coupling between, dark and luminous matter in galaxies, with the aid of scaling relations, mass tracers, and numerical simulations; and (S03) expand model inferences into the uncharted realm of low-mass galaxies. These objectives will be tackled by assembling the largest and most complete catalogue of spatially resolved structural and dynamical properties (WP2) of galaxies to characterize in a novel way their luminous and dark components (WP3). Queen's University is a world-leading institution for the study of dark matter. The Queen’s Astrophysics Group includes many experts in the observational and numerical characterization of luminous and dark matter in galaxies. The Queen’s Astroparticle group, led by 2015 Physics Nobel Laureate Prof. Art McDonald, is also at the forefront of experimental cold dark matter detections. The return phase institution, the IAC, hosts world experts in both the empirical analysis and numerical modelling of galaxies. It provides access to supercomputers and world-class telescopes (best optical/near-IR observatory in Europe). Through this MSCA-IF-GF, my training in Canada would capitalize upon my past experiences (former MSCA ESR in DAGAL ITN) by coupling photometric and spectroscopic properties of unprecedentedly large sets of galaxies and simulations to constrain in a novel way models of galaxy formation. Dissemination of the knowledge acquired in Canada would greatly complement related European efforts.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/893673 |
Start date: | 01-09-2020 |
End date: | 21-12-2023 |
Total budget - Public funding: | 250 497,60 Euro - 250 497,00 Euro |
Cordis data
Original description
I propose the project Galaxy Sizes as Tracers of Dark Matter (GALSIZE) to be supervised by Prof. Courteau at Queen’s University in Kingston (Canada, Third Country for the outgoing phase) and by Prof. Knapen at the Instituto de Astrofísica de Canarias (IAC, Tenerife, Spain, beneficiary institution and host for the incoming phase). The main scientific goals are to (S01) establish a new paradigm of galaxy data-model comparisons, developing a definitive theory of disk formation based on galaxy sizes; (S02) characterize the nature of, and coupling between, dark and luminous matter in galaxies, with the aid of scaling relations, mass tracers, and numerical simulations; and (S03) expand model inferences into the uncharted realm of low-mass galaxies. These objectives will be tackled by assembling the largest and most complete catalogue of spatially resolved structural and dynamical properties (WP2) of galaxies to characterize in a novel way their luminous and dark components (WP3). Queen's University is a world-leading institution for the study of dark matter. The Queen’s Astrophysics Group includes many experts in the observational and numerical characterization of luminous and dark matter in galaxies. The Queen’s Astroparticle group, led by 2015 Physics Nobel Laureate Prof. Art McDonald, is also at the forefront of experimental cold dark matter detections. The return phase institution, the IAC, hosts world experts in both the empirical analysis and numerical modelling of galaxies. It provides access to supercomputers and world-class telescopes (best optical/near-IR observatory in Europe). Through this MSCA-IF-GF, my training in Canada would capitalize upon my past experiences (former MSCA ESR in DAGAL ITN) by coupling photometric and spectroscopic properties of unprecedentedly large sets of galaxies and simulations to constrain in a novel way models of galaxy formation. Dissemination of the knowledge acquired in Canada would greatly complement related European efforts.Status
TERMINATEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)