X-MIXING | Efficient mixing method at the microscale for Time-Resolved Serial Femtosecond Crystallography

Summary
X-MIXING is an interdisciplinary project aimed at conceiving an efficient mixing method at the microscale suitable for triggering not-light sensitive biochemical reactions in the application of Time-Resolved Serial Femtosecond Crystallography. Nowadays, the temporal resolution of this type of dynamic structural biology analysis with X-ray Free-Electron Lasers is limited by the minimum mixing time that current methods can produce. As it is shown in a proof-of-concept, an exciting combination of electrohydrodynamic fields and momentum transfer lead to a significant variation of the spatiotemporal scales within the convection-diffusion mechanism. So, this configuration can potentially generate mixing from 100 to 1000 faster than current means do. Besides, its versatility would enable not only to reduce the mixing time substantially, but also to induce jumps in PH and temperature that would additionally open horizons concerning new types of triggering reactions in the field. These critical features have the potential to become this original configuration in a key to take full advantage of the recent significant investment, over 1,22 billion euro (2005 value), paid by European Union and partners for the construction of the European XFEL (Germany), whose user operation started in September 2017. To explore and elucidate the underlying physical limits of the proposed method, the research methodology of this project will embrace different approaches such as micro-PIV experiments, numerical simulations, and scaling analysis.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/838997
Start date: 01-10-2019
End date: 28-02-2022
Total budget - Public funding: 197 529,60 Euro - 197 529,00 Euro
Cordis data

Original description

X-MIXING is an interdisciplinary project aimed at conceiving an efficient mixing method at the microscale suitable for triggering not-light sensitive biochemical reactions in the application of Time-Resolved Serial Femtosecond Crystallography. Nowadays, the temporal resolution of this type of dynamic structural biology analysis with X-ray Free-Electron Lasers is limited by the minimum mixing time that current methods can produce. As it is shown in a proof-of-concept, an exciting combination of electrohydrodynamic fields and momentum transfer lead to a significant variation of the spatiotemporal scales within the convection-diffusion mechanism. So, this configuration can potentially generate mixing from 100 to 1000 faster than current means do. Besides, its versatility would enable not only to reduce the mixing time substantially, but also to induce jumps in PH and temperature that would additionally open horizons concerning new types of triggering reactions in the field. These critical features have the potential to become this original configuration in a key to take full advantage of the recent significant investment, over 1,22 billion euro (2005 value), paid by European Union and partners for the construction of the European XFEL (Germany), whose user operation started in September 2017. To explore and elucidate the underlying physical limits of the proposed method, the research methodology of this project will embrace different approaches such as micro-PIV experiments, numerical simulations, and scaling analysis.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018