DUST-GLASS | Improving global dust prediction and monitoring through data assimilation of satellite-based dust aerosol optical depth

Summary
DUST-GLASS aims at improving global dust prediction and monitoring by optimizing an advanced data assimilation system (LETKF scheme) coupled with a sophisticated atmospheric-dust model (NMMB/BSC-Dust). For the accomplishment of these core scientific goals, a fine resolution (0.1o x 0.1o) global dust optical depth (DOD) database, suitable for data assimilation, will be developed via a synergy of state-of-the-art Level 2 satellite retrievals acquired by MODIS, MISR and OMI sensors (2007-2016). The impacts of assimilating this novel dataset (DOD) on model’s predictive skills, both at global and regional scale, will be assessed objectively. Global forecasts (5 days) will be carried out for different periods aiming at studying dust aerosols’ mobilization and transport from the major dust sources of the planet, while a global reanalysis (0.5o x 0.7o) dataset will be generated for long-term dust monitoring. In addition, regional short-term (84 hours) forecasts will be conducted for 20 Mediterranean dust outbreaks identified by a satellite algorithm in the framework of the MDRAF project (fellow’s previous MC-IEF). In the evaluation analysis, the model’s dust outputs will be compared versus measurements derived by ground networks (AERONET, MAN, ACTRIS) as well as against columnar/vertical satellite retrievals (MODIS, MISR, CALIOP). Moreover, temperature and radiation will be also considered since “corrections” on dust fields, thanks to data assimilation, are expected to be evident on both parameters due to dust-radiation interactions. The aforementioned variables will be compared against observations obtained by ground networks (ISB, RAOB, BSRN) and reanalysis/analysis products (ERA-Interim, FNL). Considering the multifaceted role of dust, the scientific outcomes of DUST-GLASS are expected to contribute effectively to interdisciplinary studies regarding dust aerosols as well as their associated impacts on health, anthropogenic activities, environment, weather and climate.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/749461
Start date: 01-05-2017
End date: 30-04-2019
Total budget - Public funding: 164 653,20 Euro - 164 653,00 Euro
Cordis data

Original description

DUST-GLASS aims at improving global dust prediction and monitoring by optimizing an advanced data assimilation system (LETKF scheme) coupled with a sophisticated atmospheric-dust model (NMMB/BSC-Dust). For the accomplishment of these core scientific goals, a fine resolution (0.1o x 0.1o) global dust optical depth (DOD) database, suitable for data assimilation, will be developed via a synergy of state-of-the-art Level 2 satellite retrievals acquired by MODIS, MISR and OMI sensors (2007-2016). The impacts of assimilating this novel dataset (DOD) on model’s predictive skills, both at global and regional scale, will be assessed objectively. Global forecasts (5 days) will be carried out for different periods aiming at studying dust aerosols’ mobilization and transport from the major dust sources of the planet, while a global reanalysis (0.5o x 0.7o) dataset will be generated for long-term dust monitoring. In addition, regional short-term (84 hours) forecasts will be conducted for 20 Mediterranean dust outbreaks identified by a satellite algorithm in the framework of the MDRAF project (fellow’s previous MC-IEF). In the evaluation analysis, the model’s dust outputs will be compared versus measurements derived by ground networks (AERONET, MAN, ACTRIS) as well as against columnar/vertical satellite retrievals (MODIS, MISR, CALIOP). Moreover, temperature and radiation will be also considered since “corrections” on dust fields, thanks to data assimilation, are expected to be evident on both parameters due to dust-radiation interactions. The aforementioned variables will be compared against observations obtained by ground networks (ISB, RAOB, BSRN) and reanalysis/analysis products (ERA-Interim, FNL). Considering the multifaceted role of dust, the scientific outcomes of DUST-GLASS are expected to contribute effectively to interdisciplinary studies regarding dust aerosols as well as their associated impacts on health, anthropogenic activities, environment, weather and climate.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016