ArealPlasticity | Area-specific transcriptional dynamics and plasticity of neocortical neurons

Summary
Cellular diversity in the nervous system determines the variety of circuits that set the framework for brain function. These different types of neurons emerge during pre- and post-natal development through the regulation of gene networks by two archetypical processes: cell-intrinsic processes, which are independent of environmental conditions, and cell-extrinsic processes, which are triggered by environmental signals. A continuum of interactions between intrinsic and extrinsic processes underlie cellular states. However, their respective contribution to neuronal identity has been difficult to untangle because neurons are highly interconnected and heterogeneous cell-types with distinct and dynamic sensitivities to environmental signals. Here, using the mouse neocortex as a model system, I will investigate how cell-intrinsic and cell-extrinsic processes interact to define neuronal identities using Patch-seq assessment of neuronal molecular identity following transplantation across cortical areas. Neuronal “plasticity” will be assessed by transplantation, which corresponds to the artificial altering of the environmental factors. Data comparison between transplanted neurons and controls will identify the candidate of “core genes” which regulate the environment-dependent plasticity of neuronal differentiation. Finally, I will manipulate these candidate genes and analyze their effect on final neuronal identity to validate their causal relationship. Altogether, this study will contribute to revealing the plasticity of neuronal identity across cortical areas and to addressing environment-dependent molecular mechanisms controlling the plasticity. In the long term, this may contribute to a better understanding of neurodevelopmental and psychiatric disorders, in which cell-intrinsic and extrinsic factors interact to produce the disease.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101026172
Start date: 01-04-2022
End date: 31-03-2024
Total budget - Public funding: 203 149,44 Euro - 203 149,00 Euro
Cordis data

Original description

Cellular diversity in the nervous system determines the variety of circuits that set the framework for brain function. These different types of neurons emerge during pre- and post-natal development through the regulation of gene networks by two archetypical processes: cell-intrinsic processes, which are independent of environmental conditions, and cell-extrinsic processes, which are triggered by environmental signals. A continuum of interactions between intrinsic and extrinsic processes underlie cellular states. However, their respective contribution to neuronal identity has been difficult to untangle because neurons are highly interconnected and heterogeneous cell-types with distinct and dynamic sensitivities to environmental signals. Here, using the mouse neocortex as a model system, I will investigate how cell-intrinsic and cell-extrinsic processes interact to define neuronal identities using Patch-seq assessment of neuronal molecular identity following transplantation across cortical areas. Neuronal “plasticity” will be assessed by transplantation, which corresponds to the artificial altering of the environmental factors. Data comparison between transplanted neurons and controls will identify the candidate of “core genes” which regulate the environment-dependent plasticity of neuronal differentiation. Finally, I will manipulate these candidate genes and analyze their effect on final neuronal identity to validate their causal relationship. Altogether, this study will contribute to revealing the plasticity of neuronal identity across cortical areas and to addressing environment-dependent molecular mechanisms controlling the plasticity. In the long term, this may contribute to a better understanding of neurodevelopmental and psychiatric disorders, in which cell-intrinsic and extrinsic factors interact to produce the disease.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships