ADOQ | Adaptive Optics for Quantum Communication

Summary
Securing exchanges of information on a global scale represents a major challenge in our society today. The emerging field of quantum communication relies on the fundamental laws of physics to offer unconditional security. In this respect, encoding information on spatial properties of photons has recently demonstrated a strong potential for increasing security level and data rates of quantum communications. However, disturbances in the distribution of quantum states in free-space (i.e. atmospheric turbulence) are critical challenges that must be overcome to advance beyond laboratory proof-of-principle demonstrations and implement long-distance communications. The goal of this work is to enhance information capacity and enlarge distances of free-space quantum communications by monitoring optical disturbances using adaptive optics. This ambitious goal will be achieved by combining the powerful techniques of the emerging field of quantum light shaping, with the speed of adaptive optics systems and the extreme sensitivity and high temporal resolution of quantum imaging sensors. Specifically, the proposal is based on our novel insight that wavefront correction performed in the classical domain (i.e. using an intense classical light beam) can be transferred to the quantum domain to prevent degradation of quantum states that carry the information.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/840958
Start date: 01-06-2019
End date: 07-09-2021
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

Securing exchanges of information on a global scale represents a major challenge in our society today. The emerging field of quantum communication relies on the fundamental laws of physics to offer unconditional security. In this respect, encoding information on spatial properties of photons has recently demonstrated a strong potential for increasing security level and data rates of quantum communications. However, disturbances in the distribution of quantum states in free-space (i.e. atmospheric turbulence) are critical challenges that must be overcome to advance beyond laboratory proof-of-principle demonstrations and implement long-distance communications. The goal of this work is to enhance information capacity and enlarge distances of free-space quantum communications by monitoring optical disturbances using adaptive optics. This ambitious goal will be achieved by combining the powerful techniques of the emerging field of quantum light shaping, with the speed of adaptive optics systems and the extreme sensitivity and high temporal resolution of quantum imaging sensors. Specifically, the proposal is based on our novel insight that wavefront correction performed in the classical domain (i.e. using an intense classical light beam) can be transferred to the quantum domain to prevent degradation of quantum states that carry the information.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018