OSeaIce | Two-way interactions between ocean heat transport and Arctic sea ice

Summary
Sea ice in the Arctic region is retreating at fast pace with potential impacts on the weather and climate at mid and high latitudes, as well as the biosphere and society. Sea-ice loss is driven by anthropogenic global warming, atmospheric circulation changes, climate feedbacks, and ocean heat transport. To date, no clear consensus regarding the detailed impact of the latter (ocean heat transport) on Arctic sea ice exists. Conversely, the changing sea ice also affects ocean heat transport, but this effect is much less studied. Therefore, this action proposes to explore the two-way interactions between ocean heat transport and Arctic sea ice. To this end, we will use a state-of-the-art global climate model (EC-Earth) and perform different sensitivity experiments to gain insights into these important interactions. Based on the results from these experiments, we will refine model projections of Arctic sea ice. Comparison to observations will be carried out to ensure that model simulations are realistic. We will also assess the impact of model spatial resolution on the relationships between ocean heat transport and Arctic sea ice, as an extension of the work performed within the EU PRIMAVERA project (PRocess-based climate sIMulation: AdVances in high resolution modelling and European climate Risk Assessment). This action will allow to provide more reliable and robust information on regional Arctic sea-ice present and future changes to users and stakeholders. Finally, this project is highly interdisciplinary as it combines three key components of the climate system (i.e. the ocean, sea ice, and atmosphere), and will be done in collaboration with the NordForsk ARCPATH project (Arctic Climate Predictions: Pathways to Resilient, Sustainable Societies), which focuses on improving Arctic climate predictions and better understanding socio-economic impacts of Arctic changes.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/834493
Start date: 01-11-2019
End date: 31-10-2020
Total budget - Public funding: 101 926,08 Euro - 101 926,00 Euro
Cordis data

Original description

Sea ice in the Arctic region is retreating at fast pace with potential impacts on the weather and climate at mid and high latitudes, as well as the biosphere and society. Sea-ice loss is driven by anthropogenic global warming, atmospheric circulation changes, climate feedbacks, and ocean heat transport. To date, no clear consensus regarding the detailed impact of the latter (ocean heat transport) on Arctic sea ice exists. Conversely, the changing sea ice also affects ocean heat transport, but this effect is much less studied. Therefore, this action proposes to explore the two-way interactions between ocean heat transport and Arctic sea ice. To this end, we will use a state-of-the-art global climate model (EC-Earth) and perform different sensitivity experiments to gain insights into these important interactions. Based on the results from these experiments, we will refine model projections of Arctic sea ice. Comparison to observations will be carried out to ensure that model simulations are realistic. We will also assess the impact of model spatial resolution on the relationships between ocean heat transport and Arctic sea ice, as an extension of the work performed within the EU PRIMAVERA project (PRocess-based climate sIMulation: AdVances in high resolution modelling and European climate Risk Assessment). This action will allow to provide more reliable and robust information on regional Arctic sea-ice present and future changes to users and stakeholders. Finally, this project is highly interdisciplinary as it combines three key components of the climate system (i.e. the ocean, sea ice, and atmosphere), and will be done in collaboration with the NordForsk ARCPATH project (Arctic Climate Predictions: Pathways to Resilient, Sustainable Societies), which focuses on improving Arctic climate predictions and better understanding socio-economic impacts of Arctic changes.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018