PolAME | Polarimetry of Anomalous Microwave Emission: Implication for B-mode Polarization Detection and Galactic Science

Summary
Anomalous Microwave Emission (AME) is potentially polarized in the frequency range [1-100] GHz. The polarization properties of this astrophysical signal have to be characterized and understood completely for one willing to remove Galactic foregrounds in order to detect B-mode polarization for cosmology. The characterization of AME polarization properties is also fundamental in term of Galactic Astrophysics to understand the mechanisms producing the AME. The PolAME project aims to use the QUIJOTE-CMB experiment and its two instruments (the MFI and the TGI) for measuring the degree of polarization of the AME in the domain range [10-30] GHz on a sample of selected sources. This new data, in addition to new C-BASS data and the WMAP and PLANCK maps and ancillary data will be compared to theory and state-of-the-art modelling results. The Galactic science community will greatly benefit the new advances that will be provided by the PolAME project. The main outcome of this project will lead to a stronger characterization of the Galactic Polarized Foregrounds which is fundamental for cosmology. Knew knowledge will be produced about our understanding of the nature of the AME and dust grain evolution processes in our Galaxy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/658499
Start date: 01-01-2016
End date: 31-12-2017
Total budget - Public funding: 158 121,60 Euro - 158 121,00 Euro
Cordis data

Original description

Anomalous Microwave Emission (AME) is potentially polarized in the frequency range [1-100] GHz. The polarization properties of this astrophysical signal have to be characterized and understood completely for one willing to remove Galactic foregrounds in order to detect B-mode polarization for cosmology. The characterization of AME polarization properties is also fundamental in term of Galactic Astrophysics to understand the mechanisms producing the AME. The PolAME project aims to use the QUIJOTE-CMB experiment and its two instruments (the MFI and the TGI) for measuring the degree of polarization of the AME in the domain range [10-30] GHz on a sample of selected sources. This new data, in addition to new C-BASS data and the WMAP and PLANCK maps and ancillary data will be compared to theory and state-of-the-art modelling results. The Galactic science community will greatly benefit the new advances that will be provided by the PolAME project. The main outcome of this project will lead to a stronger characterization of the Galactic Polarized Foregrounds which is fundamental for cosmology. Knew knowledge will be produced about our understanding of the nature of the AME and dust grain evolution processes in our Galaxy.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)