Summary
Detection of special nuclear materials (SNM), is of vital importance to prevent nuclear terrorism and to secure states’ national security. Neutron detection is a particularly useful tool to identify SNM and neutron-sensitive scintillators have many promising properties, such as ease of use, good time resolution, and high detection efficiency. In this project we develop a new state-of-the art neutron sensitive scintillator using on nanostructured scintillating materials. Based on the early advancements that our research team has made, we propose Li (or B) incorporated nanostructured ZnO devices for highly efficient thermal neutron detection. These devices use a novel nanorod array design that greatly increases the effective surface area and efficiency of the sensor. Cost effective low temperature hydrothermal growth is used to obtain ZnO nanorod arrays. The state-of-the-art design of the nanorod array combines the key advantages of a low cost growth technique together with environmentally friendly and widely available materials.
The Global Fellow (GF) has outstanding experience in Nuclear Science and Technology and has wide expertise in radiation and nuclear physics. The supervisor at the partner organization (Georgia Tech, USA) is a renowned Professor in radiation physics and holds a highly relevant patent. The supervisor at the beneficiary organisation (University of Surrey, UK), has a strong background in the physics of materials for new detectors and has recently developed novel nanocomposite scintillators and organic neutron detectors, both of which are highly relevant to the project. The GF worked on neutron measurements under the supervision of the host at Georgia Tech between 2013-2015, and therefore has the required expertise to deliver this program through effective collaboration with both partner institutions.
The Global Fellow (GF) has outstanding experience in Nuclear Science and Technology and has wide expertise in radiation and nuclear physics. The supervisor at the partner organization (Georgia Tech, USA) is a renowned Professor in radiation physics and holds a highly relevant patent. The supervisor at the beneficiary organisation (University of Surrey, UK), has a strong background in the physics of materials for new detectors and has recently developed novel nanocomposite scintillators and organic neutron detectors, both of which are highly relevant to the project. The GF worked on neutron measurements under the supervision of the host at Georgia Tech between 2013-2015, and therefore has the required expertise to deliver this program through effective collaboration with both partner institutions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101026555 |
Start date: | 15-12-2021 |
End date: | 14-12-2024 |
Total budget - Public funding: | 289 732,80 Euro - 289 732,00 Euro |
Cordis data
Original description
Detection of special nuclear materials (SNM), is of vital importance to prevent nuclear terrorism and to secure states’ national security. Neutron detection is a particularly useful tool to identify SNM and neutron-sensitive scintillators have many promising properties, such as ease of use, good time resolution, and high detection efficiency. In this project we develop a new state-of-the art neutron sensitive scintillator using on nanostructured scintillating materials. Based on the early advancements that our research team has made, we propose Li (or B) incorporated nanostructured ZnO devices for highly efficient thermal neutron detection. These devices use a novel nanorod array design that greatly increases the effective surface area and efficiency of the sensor. Cost effective low temperature hydrothermal growth is used to obtain ZnO nanorod arrays. The state-of-the-art design of the nanorod array combines the key advantages of a low cost growth technique together with environmentally friendly and widely available materials.The Global Fellow (GF) has outstanding experience in Nuclear Science and Technology and has wide expertise in radiation and nuclear physics. The supervisor at the partner organization (Georgia Tech, USA) is a renowned Professor in radiation physics and holds a highly relevant patent. The supervisor at the beneficiary organisation (University of Surrey, UK), has a strong background in the physics of materials for new detectors and has recently developed novel nanocomposite scintillators and organic neutron detectors, both of which are highly relevant to the project. The GF worked on neutron measurements under the supervision of the host at Georgia Tech between 2013-2015, and therefore has the required expertise to deliver this program through effective collaboration with both partner institutions.
Status
SIGNEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping