ETERNAL | high-EfficienT piEzoelectRic vibratioN energy hArvester for raiL track system

Summary
Railway track and rolling stock interact with each other, forming a complex dynamic system which leads to structural degradation of railway assets with time, as such, pose a threat to not only safety, but comfortable rail operations. Modern ICT and sensing technologies could ensure a safe, secure and efficient transport network. However, greater connectivity and sensor coverage along tracks which require no mains power or batteries for energy supply, eliminating the costs for cabling and battery replacement, and minimum gateway installations, are critical for the success of industry adoptions. As such, the ETERNAL fellowship is providing a solution towards to the development of self-powered Internet-of-Things (IoT) devices for railway system by harvesting the vibration energy when the train travels. Through new, insightful laboratory investigations supported by numerical simulations, a vibration-based piezoelectric energy harvesting prototype is developed for the railway system. ETERNAL establishes inner links between the excitation source and the component natural frequency in rail track systems, and develops the piezoelectric ceramics by combining texturing process and multilayered structure together, which take the functionality (large output current, high energy density, low cost, and high mechanical strength) of the piezoelectric vibration energy harvester (PVEH) to the next level. This fellowship advances the underpinning technology for developing an energy harvester with the ultimate goal of developing self-powered IoT devices, which expected to transform rail track monitoring capability and ensure a more sustainable railway development in the 21st century, in the EU and internationally.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030797
Start date: 01-09-2022
End date: 31-08-2025
Total budget - Public funding: 337 400,64 Euro - 337 400,00 Euro
Cordis data

Original description

Railway track and rolling stock interact with each other, forming a complex dynamic system which leads to structural degradation of railway assets with time, as such, pose a threat to not only safety, but comfortable rail operations. Modern ICT and sensing technologies could ensure a safe, secure and efficient transport network. However, greater connectivity and sensor coverage along tracks which require no mains power or batteries for energy supply, eliminating the costs for cabling and battery replacement, and minimum gateway installations, are critical for the success of industry adoptions. As such, the ETERNAL fellowship is providing a solution towards to the development of self-powered Internet-of-Things (IoT) devices for railway system by harvesting the vibration energy when the train travels. Through new, insightful laboratory investigations supported by numerical simulations, a vibration-based piezoelectric energy harvesting prototype is developed for the railway system. ETERNAL establishes inner links between the excitation source and the component natural frequency in rail track systems, and develops the piezoelectric ceramics by combining texturing process and multilayered structure together, which take the functionality (large output current, high energy density, low cost, and high mechanical strength) of the piezoelectric vibration energy harvester (PVEH) to the next level. This fellowship advances the underpinning technology for developing an energy harvester with the ultimate goal of developing self-powered IoT devices, which expected to transform rail track monitoring capability and ensure a more sustainable railway development in the 21st century, in the EU and internationally.

Status

TERMINATED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships