COMETE | Next-Generation Computational Methods for Enhanced Multiphase Flow Processes

Summary
In this project, we aim at building a computational framework and a network of competence to extend the applicability of state-of-the-art formulations to industrially-relevant multiphase turbulent flows. We focus on applications characterized by the transport of particles/droplets in two-phase flows with gas-liquid or liquid-liquid deformable interfaces, which are ubiquitous in process, chemical, and power engineering. The targeted applications are at the crossroads between academic research and practical concerns (e.g. particle deposition in boiling flows, droplet coalescence/breakup in emulsions, freezing/defreezing in heat pipes or changes in two-phase flow patterns) and their modeling in an industrial context represents a major challenge. This is due to the complexity arising from the co-existence of different phases, but also to a lack of cross-fertilization between academia and industry: Several methods and ideas exist but their application is often limited to flows of academic interest, with scarce transfer of skills, poor experimental validation and, most importantly, no unified framework into which existing methods could be cast. This represents a serious obstacle to industrial developments since engineers and practitioners can be unaware of which method to use and in need of support. To build the new framework, we consider emerging complementary methods, including Smoothed Particle Hydrodynamics and Phase Field.
COMETE leverages on the complementary expertise of the industrial and academic partners to ensure successful combination of technology-driven objectives and original research developments. To this aim, we will build an international network of excellence by putting forward synchronized training-through-research and training-on-the-job activities, and we will form PhD students fully capable of mastering the next-generation scientific methodologies for complex industrial applications of multiphase flow technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/813948
Start date: 01-11-2018
End date: 30-04-2023
Total budget - Public funding: 753 185,52 Euro - 753 185,00 Euro
Cordis data

Original description

In this project, we aim at building a computational framework and a network of competence to extend the applicability of state-of-the-art formulations to industrially-relevant multiphase turbulent flows. We focus on applications characterized by the transport of particles/droplets in two-phase flows with gas-liquid or liquid-liquid deformable interfaces, which are ubiquitous in process, chemical, and power engineering. The targeted applications are at the crossroads between academic research and practical concerns (e.g. particle deposition in boiling flows, droplet coalescence/breakup in emulsions, freezing/defreezing in heat pipes or changes in two-phase flow patterns) and their modeling in an industrial context represents a major challenge. This is due to the complexity arising from the co-existence of different phases, but also to a lack of cross-fertilization between academia and industry: Several methods and ideas exist but their application is often limited to flows of academic interest, with scarce transfer of skills, poor experimental validation and, most importantly, no unified framework into which existing methods could be cast. This represents a serious obstacle to industrial developments since engineers and practitioners can be unaware of which method to use and in need of support. To build the new framework, we consider emerging complementary methods, including Smoothed Particle Hydrodynamics and Phase Field.
COMETE leverages on the complementary expertise of the industrial and academic partners to ensure successful combination of technology-driven objectives and original research developments. To this aim, we will build an international network of excellence by putting forward synchronized training-through-research and training-on-the-job activities, and we will form PhD students fully capable of mastering the next-generation scientific methodologies for complex industrial applications of multiphase flow technology.

Status

CLOSED

Call topic

MSCA-ITN-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2018
MSCA-ITN-2018