HAEMOGLOBIN | From biomass to catalysts and chemicals: exploiting blood and food waste towards high-value products.

Summary
The aim of this proposal is to make universal and low-cost catalysts from industrial waste and apply them to biomass upgrading. To that end, we will make single atomic FeNx sites supported on carbon (FeNx@C) that have seen tremendous development in organic chemistry in the past 5 years. Indeed, they are active for both oxidations and reductions, and constitute promising substitutes for toxic, scarce and costly platinum-group metals (PGM). Yet major challenges remain in the field: first we need to find new routes to drastically lower the footprint of their synthesis. Here we will adopt a bio-inspired approach and use inexpensive hemoproteins as precursors: they naturally contain four pre-built FeNx sites (hemes) per unit. Hemoproteins can be extracted from blood in slaughterhouse waste. We will use the resulting catalysts for the upgrading of key biomass-derived platform molecules: 5-hydroxymethylfurfural (5-HMF), levulinic acid (LA), and other biomass-derived alcohols.

The reductive and oxidative potency of FeNx@C will be first explored separately, then sequentially for alcohol direct conversion to amines. Due to their heterogeneous nature, FeNx@C catalysts can be readily transposed to continuous flow synthesis. With such promising technology, we will fully exploit biomass to both make new catalysts and perform large scale conversion of bio-based platform chemicals.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/892614
Start date: 10-06-2020
End date: 09-06-2022
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

The aim of this proposal is to make universal and low-cost catalysts from industrial waste and apply them to biomass upgrading. To that end, we will make single atomic FeNx sites supported on carbon (FeNx@C) that have seen tremendous development in organic chemistry in the past 5 years. Indeed, they are active for both oxidations and reductions, and constitute promising substitutes for toxic, scarce and costly platinum-group metals (PGM). Yet major challenges remain in the field: first we need to find new routes to drastically lower the footprint of their synthesis. Here we will adopt a bio-inspired approach and use inexpensive hemoproteins as precursors: they naturally contain four pre-built FeNx sites (hemes) per unit. Hemoproteins can be extracted from blood in slaughterhouse waste. We will use the resulting catalysts for the upgrading of key biomass-derived platform molecules: 5-hydroxymethylfurfural (5-HMF), levulinic acid (LA), and other biomass-derived alcohols.

The reductive and oxidative potency of FeNx@C will be first explored separately, then sequentially for alcohol direct conversion to amines. Due to their heterogeneous nature, FeNx@C catalysts can be readily transposed to continuous flow synthesis. With such promising technology, we will fully exploit biomass to both make new catalysts and perform large scale conversion of bio-based platform chemicals.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019