LOGEO | Curve Counting and Log Geometry

Summary
The Gromov--Witten invariants of a space X record the number of curves in X of a given genus and degree which meet a given collection of cycles in X. Gromov--Witten theory is an extremely active field of research, and through its technical challenges attracts some of the most talented researchers at the interface of geometry with physics, who have made a lot of progress here over the last 20 years. We propose a program to apply Gromov--Witten theory to questions from a broad range of areas of mathematics: from sheaf counting theories, from mirror symmetry, and from the moduli theory of curves. The key new ingredient here is the recent significant advance in our understanding of these theories using logarithmic (log) geometry, which is a modern variant of algebraic geometry, developed to deal with two fundamental and related problems: compactification and degeneration. We will investigate solutions to these problems in interlinked areas of algebraic geometry, and use them to obtain major advances in Gromov--Witten theory. Building on the success of our previous work on log Gromov--Witten theory, we propose a program to 1) construct a computationally effective log geometric extension of sheaf counting theories, 2) develop new techniques to enumerate curves in Deligne-Mumford stacks (orbifolds) and to construct mirrors to such stacks, and; 3) investigate stability in the moduli spaces of curves along with original new connections to quiver-stability theories. Completion of these projects, will break new ground in enumerative algebraic geometry, and even if not all of the overall goals are achieved it will be a cornerstone in understanding curve-counting in different setups via modern log geometric techniques.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101025415
Start date: 01-09-2022
End date: 31-08-2025
Total budget - Public funding: 253 052,16 Euro - 253 052,00 Euro
Cordis data

Original description

The Gromov--Witten invariants of a space X record the number of curves in X of a given genus and degree which meet a given collection of cycles in X. Gromov--Witten theory is an extremely active field of research, and through its technical challenges attracts some of the most talented researchers at the interface of geometry with physics, who have made a lot of progress here over the last 20 years. We propose a program to apply Gromov--Witten theory to questions from a broad range of areas of mathematics: from sheaf counting theories, from mirror symmetry, and from the moduli theory of curves. The key new ingredient here is the recent significant advance in our understanding of these theories using logarithmic (log) geometry, which is a modern variant of algebraic geometry, developed to deal with two fundamental and related problems: compactification and degeneration. We will investigate solutions to these problems in interlinked areas of algebraic geometry, and use them to obtain major advances in Gromov--Witten theory. Building on the success of our previous work on log Gromov--Witten theory, we propose a program to 1) construct a computationally effective log geometric extension of sheaf counting theories, 2) develop new techniques to enumerate curves in Deligne-Mumford stacks (orbifolds) and to construct mirrors to such stacks, and; 3) investigate stability in the moduli spaces of curves along with original new connections to quiver-stability theories. Completion of these projects, will break new ground in enumerative algebraic geometry, and even if not all of the overall goals are achieved it will be a cornerstone in understanding curve-counting in different setups via modern log geometric techniques.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships