Summary
Environmental conditions in the Anthropocene are rapidly changing triggering important ecological shifts in the Earth system and approaching tipping-point levels faster than previously expected. Macrophytes are an important tipping element in the ocean, disproportionally contributing to climate regulation and in under global decline given the coexistence of multiple anthropogenic impacts. To date, most of the studies on macrophytes have focused on understanding their performance in relation to certain disturbances, but still few information exists about their overall capacity to mitigate global environmental change and their capacity to continue doing so in the future. This interdisciplinary project (SHIFT2SOLVE) comes timely at this aim addressing societal priorities for climate action and the efficiency of natural resources. The main objectives of the action are: 1) quantifying macrophytes’ capacity to buffer environmental change, 2) assessing macrophytes acclimatization and adaptive capacity, 3) forecast the resilience and mitigation capacity of macrophytes in the future based on IPCC climate scenarios and 4) use Unmanned Aerial Vehicles and machine learning to early identify ecosystem contractions at a landscape scale. These objectives will be accomplished by mixing surveys along natural gradients of temperature and ocean acidification (i.e. latitudinal gradients in the Western Mediterranean and natural CO2 vents), manipulative experiments in the field and in the laboratory, genetic analyses and mechanistic mathematical models based on ecophysiological processes. This project will importantly contribute to my career development and professional maturity increasing my independence as a researcher and the oportunities to continuing my research in Europe. Overall, the outcomes of the project will contribute to securing the maximum mitigation capacity possible associated with marine macrophytes, essential to preserve the resilience of the Earth System.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101030591 |
Start date: | 01-02-2022 |
End date: | 31-01-2024 |
Total budget - Public funding: | 196 707,84 Euro - 196 707,00 Euro |
Cordis data
Original description
Environmental conditions in the Anthropocene are rapidly changing triggering important ecological shifts in the Earth system and approaching tipping-point levels faster than previously expected. Macrophytes are an important tipping element in the ocean, disproportionally contributing to climate regulation and in under global decline given the coexistence of multiple anthropogenic impacts. To date, most of the studies on macrophytes have focused on understanding their performance in relation to certain disturbances, but still few information exists about their overall capacity to mitigate global environmental change and their capacity to continue doing so in the future. This interdisciplinary project (SHIFT2SOLVE) comes timely at this aim addressing societal priorities for climate action and the efficiency of natural resources. The main objectives of the action are: 1) quantifying macrophytes’ capacity to buffer environmental change, 2) assessing macrophytes acclimatization and adaptive capacity, 3) forecast the resilience and mitigation capacity of macrophytes in the future based on IPCC climate scenarios and 4) use Unmanned Aerial Vehicles and machine learning to early identify ecosystem contractions at a landscape scale. These objectives will be accomplished by mixing surveys along natural gradients of temperature and ocean acidification (i.e. latitudinal gradients in the Western Mediterranean and natural CO2 vents), manipulative experiments in the field and in the laboratory, genetic analyses and mechanistic mathematical models based on ecophysiological processes. This project will importantly contribute to my career development and professional maturity increasing my independence as a researcher and the oportunities to continuing my research in Europe. Overall, the outcomes of the project will contribute to securing the maximum mitigation capacity possible associated with marine macrophytes, essential to preserve the resilience of the Earth System.Status
TERMINATEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping