MMOF4PPS | Unraveling the Photobehavior of Novel Mixed-metal MOFs for Efficient New Photocatalysts

Summary
Research and development on high performance (in terms of stability and robustness) and conceptually innovative catalysts is essential to answer the increasing demand of sustainable chemicals and to achieve the European goal of energy consumption reduction, energy security improvement and competitiveness.
In this regard multi-molecular catalyst with efficient electronic conductivity is emerging as a prominent research area. Mixed-metal metal organic frameworks (MM-MOFs) indeed exhibit excellent ability to deliver superior photocatalytic activity with improved temperature stability and robustness in harsh conditions, compared to homometallic systems. However, the understanding of these materials is still in its infancy. It is thus crucial to couple the synthesis of tailor-made multi-material systems with high-resolution characterization techniques and reliable surface science models, to obtain a deep understanding of emergent chemical and physical phenomena that are otherwise inaccessible with a single material catalyst.
The main objectives and actions of MMOF4PPS will thus be to: (a) explore and optimize synthetic procedures for MM-MOFs, (b) decipher the ultrafast photo-processes inside MM-MOFs, (c) study the effect of varying ratio of metal clusters on the photocatalytic performance, (d) gain detailed knowledge of the effectiveness of MM-MOFs over single metal MOFs in photocatalysis and (e) develop structure–(photocatalytic) activity relationship.
Such information represents a steppingstone for the optimization and acceleration in the development of sustainable catalysis, and is thus expected to have significant industrial and socio-economic impacts.
In addition, both experienced researcher and host will benefit from establishing interdisciplinary research and deliver research excellence to academia and industry.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101032472
Start date: 08-07-2021
End date: 07-07-2023
Total budget - Public funding: 160 932,48 Euro - 160 932,00 Euro
Cordis data

Original description

Research and development on high performance (in terms of stability and robustness) and conceptually innovative catalysts is essential to answer the increasing demand of sustainable chemicals and to achieve the European goal of energy consumption reduction, energy security improvement and competitiveness.
In this regard multi-molecular catalyst with efficient electronic conductivity is emerging as a prominent research area. Mixed-metal metal organic frameworks (MM-MOFs) indeed exhibit excellent ability to deliver superior photocatalytic activity with improved temperature stability and robustness in harsh conditions, compared to homometallic systems. However, the understanding of these materials is still in its infancy. It is thus crucial to couple the synthesis of tailor-made multi-material systems with high-resolution characterization techniques and reliable surface science models, to obtain a deep understanding of emergent chemical and physical phenomena that are otherwise inaccessible with a single material catalyst.
The main objectives and actions of MMOF4PPS will thus be to: (a) explore and optimize synthetic procedures for MM-MOFs, (b) decipher the ultrafast photo-processes inside MM-MOFs, (c) study the effect of varying ratio of metal clusters on the photocatalytic performance, (d) gain detailed knowledge of the effectiveness of MM-MOFs over single metal MOFs in photocatalysis and (e) develop structure–(photocatalytic) activity relationship.
Such information represents a steppingstone for the optimization and acceleration in the development of sustainable catalysis, and is thus expected to have significant industrial and socio-economic impacts.
In addition, both experienced researcher and host will benefit from establishing interdisciplinary research and deliver research excellence to academia and industry.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)