AGENT | Ancient genetics (AGENT): Capturing signatures of nutrient stress tolerance from extant landraces to unlock the production potential of marginal lands

Summary
The goal of this project is to exploit ancient Northern European landraces and improve the ability of the important cereal, barley, to acquire and utilize nutrients from the soil more efficiently. Climate change pressures and degradation of arable lands are expected to increase the need to produce feed and food even in unfavorable environments, such as marginal soils with inherent nutrient limitations. Thus, it will be a major breeding focus to select traits associated with enhanced crop robustness in order to secure the future demand for plant products. In this context, recent work has demonstrated a superior capacity of Northern European barley landraces, adapted to marginal soils, to acquire and allocate essential micronutrients. This project aims to advance our knowledge of adaptive traits conferring nutrient use efficiency. This will be achieved by bridging disciplines of plant genetics and plant nutrition, not only by unravelling functions of individual genes, but also by capturing the compensatory adjustments at the transcriptome and molecular physiology levels, preserved in landraces but seemingly lost from modern elite cultivars. The overall scientific objective is to identify the genetic control of nutrient stress tolerance, and specifically to: (i) use exome capture sequencing to identify candidate genes involved in nutrient deficiency tolerance; (ii) study the transcriptional responses of these genes under nutrient stress and their dynamics with time after stress recovery; (iii) describe in detail the physiological responses contributing to improved nutrient stress tolerance of major cereal crops. The proposed project will deliver quantitative information and a predictive understanding of nutrient stress tolerance and will provide new breeding material. The findings will act as an exemplar for other major cereals to expand cultivation and stabilize yields in marginal previously unproductive land.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/840829
Start date: 03-08-2020
End date: 06-09-2022
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

The goal of this project is to exploit ancient Northern European landraces and improve the ability of the important cereal, barley, to acquire and utilize nutrients from the soil more efficiently. Climate change pressures and degradation of arable lands are expected to increase the need to produce feed and food even in unfavorable environments, such as marginal soils with inherent nutrient limitations. Thus, it will be a major breeding focus to select traits associated with enhanced crop robustness in order to secure the future demand for plant products. In this context, recent work has demonstrated a superior capacity of Northern European barley landraces, adapted to marginal soils, to acquire and allocate essential micronutrients. This project aims to advance our knowledge of adaptive traits conferring nutrient use efficiency. This will be achieved by bridging disciplines of plant genetics and plant nutrition, not only by unravelling functions of individual genes, but also by capturing the compensatory adjustments at the transcriptome and molecular physiology levels, preserved in landraces but seemingly lost from modern elite cultivars. The overall scientific objective is to identify the genetic control of nutrient stress tolerance, and specifically to: (i) use exome capture sequencing to identify candidate genes involved in nutrient deficiency tolerance; (ii) study the transcriptional responses of these genes under nutrient stress and their dynamics with time after stress recovery; (iii) describe in detail the physiological responses contributing to improved nutrient stress tolerance of major cereal crops. The proposed project will deliver quantitative information and a predictive understanding of nutrient stress tolerance and will provide new breeding material. The findings will act as an exemplar for other major cereals to expand cultivation and stabilize yields in marginal previously unproductive land.

Status

TERMINATED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018