SED | Porous carbon materials for Solar photoElectrolytic Disinfection

Summary
Water is one crucial natural resource since life on our planet depends on it. The transmission of serious diseases through pathogenic microorganisms in water is extremely common in the developing world and the antimicrobial resistance has increased globally. The understanding of new processes that guarantee effectively the elimination of resistant microorganisms and access to safe drinking water, is therefore of utmost importance, thus a priority in H2020 programme. The scientific aim of Porous carbon materials for Solar photoElectrolytic Disinfection (SED) project is the development of a new sustainable methodology for water treatment. It will be the first time that Ordered Mesoporous Carbons and graphene foam are used in a solar photoelectrolytic disinfection system. The societal aims are to contribute to the reduction of the proportion of people without sustainable access to safe drinking water and basic sanitation. SED project proposes an advanced oxidation process combined with specific carbon materials, which can operate under ambient temperature and pressure, developing a new low-cost technology to water treatment. Oxygen and water will be used as oxidant without the addition of consumable chemicals and without generation of potential mutagenic disinfection byproducts. If one uses solar energy to drive the photoelectrolytic process, then it becomes a truly clean technology. The Associate Laboratory LSRE-LCM (Faculty of Engineering, University of Porto, FEUP) has excellent resources and facilities to carry on this research, because it is one of the most advanced academic laboratories for carbon materials production and characterisation in the EU. The participation of the Adventech company as the partner organisation for the secondment is an excellent opportunity to develop a new research method in which the transference of knowledge is one of the principal aims. These are excellent conditions for the development of SED project by Dr Velo.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/842988
Start date: 01-09-2019
End date: 31-08-2021
Total budget - Public funding: 147 815,04 Euro - 147 815,00 Euro
Cordis data

Original description

Water is one crucial natural resource since life on our planet depends on it. The transmission of serious diseases through pathogenic microorganisms in water is extremely common in the developing world and the antimicrobial resistance has increased globally. The understanding of new processes that guarantee effectively the elimination of resistant microorganisms and access to safe drinking water, is therefore of utmost importance, thus a priority in H2020 programme. The scientific aim of Porous carbon materials for Solar photoElectrolytic Disinfection (SED) project is the development of a new sustainable methodology for water treatment. It will be the first time that Ordered Mesoporous Carbons and graphene foam are used in a solar photoelectrolytic disinfection system. The societal aims are to contribute to the reduction of the proportion of people without sustainable access to safe drinking water and basic sanitation. SED project proposes an advanced oxidation process combined with specific carbon materials, which can operate under ambient temperature and pressure, developing a new low-cost technology to water treatment. Oxygen and water will be used as oxidant without the addition of consumable chemicals and without generation of potential mutagenic disinfection byproducts. If one uses solar energy to drive the photoelectrolytic process, then it becomes a truly clean technology. The Associate Laboratory LSRE-LCM (Faculty of Engineering, University of Porto, FEUP) has excellent resources and facilities to carry on this research, because it is one of the most advanced academic laboratories for carbon materials production and characterisation in the EU. The participation of the Adventech company as the partner organisation for the secondment is an excellent opportunity to develop a new research method in which the transference of knowledge is one of the principal aims. These are excellent conditions for the development of SED project by Dr Velo.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018