KINSELECT | Microtubule organisation and polarized transport of kinesins in neurons

Summary
The human brain consists of intricately connected neurons forming functional circuits encoding memory, emotions and cognition. A neuron’s polarized organisation into axons and dendrites underlies its ability to receive, process and transmit information. To establish and maintain such a highly complex organisation, cytoskeletal motor proteins transport basic building blocks to either axons or dendrites. Several members of the kinesin motor family are selectively moving into axons, presumably guided by the specific organisation of the neuronal microtubule cytoskeleton. However, how different aspects of microtubule network organisation, such as filament length, orientation and modifications, contribute to selective transport of these kinesins is poorly understood. Therefore the aim of this project is to determine the connection between neuronal microtubule organisation and polarized transport of different kinesins. We will map the three-dimensional microtubule network at nanoscale resolution (objective 1) and decipher the intracellular transport driven by kinesins with optogenetics (objective 2). The integrated and quantitative knowledge provided by this project will pave the way towards understanding polarized transport in health and neurodegenerative diseases.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/661401
Start date: 01-05-2015
End date: 30-04-2017
Total budget - Public funding: 177 598,80 Euro - 177 598,00 Euro
Cordis data

Original description

The human brain consists of intricately connected neurons forming functional circuits encoding memory, emotions and cognition. A neuron’s polarized organisation into axons and dendrites underlies its ability to receive, process and transmit information. To establish and maintain such a highly complex organisation, cytoskeletal motor proteins transport basic building blocks to either axons or dendrites. Several members of the kinesin motor family are selectively moving into axons, presumably guided by the specific organisation of the neuronal microtubule cytoskeleton. However, how different aspects of microtubule network organisation, such as filament length, orientation and modifications, contribute to selective transport of these kinesins is poorly understood. Therefore the aim of this project is to determine the connection between neuronal microtubule organisation and polarized transport of different kinesins. We will map the three-dimensional microtubule network at nanoscale resolution (objective 1) and decipher the intracellular transport driven by kinesins with optogenetics (objective 2). The integrated and quantitative knowledge provided by this project will pave the way towards understanding polarized transport in health and neurodegenerative diseases.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)