Summary
Given the rapid development of information-based society, it becomes more important and urgent to find efficient means to store and process huge amount of information. While the traditional transistor technology is becoming a bottleneck, spintronics and quantum information science stand out as two promising candidates to innovate our current computing and storage concepts. The combination of these two fields can allow us to take advantages of both fields to build solid-state platforms for studying quantum phenomena and performing multi-functional quantum information tasks. However, their interaction was limited because of the different properties of classical magnetization in spintronics and quantum qubit in the quantum information. The situation is changing with the progress of magnonic spintronics, which manipulates the collective magnetic excitation so-called magnons, and fits neatly with continuous variable quantum information. In the SPINCAT project, I will provide a route to bridge the two fields by examining the generation and manipulation of the magnonic Schrödinger cat state in the continuous variable quantum information science. In particular, I will (i) generate and manipulate of magnonic cat state in magnetic ordered systems driven by parametric pumping, (ii) ascertain its robustness under the influence of magnon-photon and magnon-magnon scattering, (iii) detect this nonclassical state by coupling it to the cavity photons, and (iv) identify its applications in quantum computing and quantum teleportation. The SPINCAT is an original, novel and highly interdisciplinary project covering spintronics, quantum optics and quantum information. The successful implementation of this project will significantly broaden the horizon of each subfield, and fertilize the on-going topics in magnonic spintronics in particular. Further, the training and skills acquired in this project would increase my competence in academics and boost myself to become a mature researcher.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101018193 |
Start date: | 01-05-2021 |
End date: | 30-04-2023 |
Total budget - Public funding: | 187 572,48 Euro - 187 572,00 Euro |
Cordis data
Original description
Given the rapid development of information-based society, it becomes more important and urgent to find efficient means to store and process huge amount of information. While the traditional transistor technology is becoming a bottleneck, spintronics and quantum information science stand out as two promising candidates to innovate our current computing and storage concepts. The combination of these two fields can allow us to take advantages of both fields to build solid-state platforms for studying quantum phenomena and performing multi-functional quantum information tasks. However, their interaction was limited because of the different properties of classical magnetization in spintronics and quantum qubit in the quantum information. The situation is changing with the progress of magnonic spintronics, which manipulates the collective magnetic excitation so-called magnons, and fits neatly with continuous variable quantum information. In the SPINCAT project, I will provide a route to bridge the two fields by examining the generation and manipulation of the magnonic Schrödinger cat state in the continuous variable quantum information science. In particular, I will (i) generate and manipulate of magnonic cat state in magnetic ordered systems driven by parametric pumping, (ii) ascertain its robustness under the influence of magnon-photon and magnon-magnon scattering, (iii) detect this nonclassical state by coupling it to the cavity photons, and (iv) identify its applications in quantum computing and quantum teleportation. The SPINCAT is an original, novel and highly interdisciplinary project covering spintronics, quantum optics and quantum information. The successful implementation of this project will significantly broaden the horizon of each subfield, and fertilize the on-going topics in magnonic spintronics in particular. Further, the training and skills acquired in this project would increase my competence in academics and boost myself to become a mature researcher.Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping