PhotoFluo | Synthesis and photopolymerisation of new fluorinated macromonomers for the obtaining of high performance fluoropolymers

Summary
The PhotoFluo project consists in a consortium of three teams (two from Europe and one from Canada) committed to work for developing novel fluoropolymers suitable for optical and electronic devices, membranes for fuel cells and Li batteries, microfluidics, and biomaterials. This ambitious goal will be achieved starting from designing new perfluoropolyalkylether building blocks (PFPAE) improving safety (not bioaccumulative like perfluoroalkylics) and having chemical inertness, flexibility in a wide temperature range, very low refractive index and wettability. PFPAE will be chain extended to tune final properties; exploiting OH functionalities, these precursors will be functionalized to make telechelic macromonomers for suitable crosslinking (via both radical and ionic processes). The polymers will be synthesized by photoinduced polymerization, chosen as an efficient and eco-friendly process: the polymer formation is fast (no more than minutes compared to hours requested by thermal processes), is solvent free, is carried out at room temperature consuming low amount of energy, permits spatial resolution, as it mainly occurs in the illuminated areas. After obtaining an original portfolio of PFPAE polymers, they will be fully characterized and tested in view of innovate applications.
The project is conducted by research groups with a relevant scientific record in the fields: (i) fluorochemistry (TWU, Canada), (ii) photopolymerization (iii) polymer science (POLITO, Italy and ENSCM, France). The combination of expertises makes the objective feasible. For the implementation of the program, 24 secondments are planned to exploit the complementarities of the different expertises of each groups, to share them and to reinforce young researchers career. The project includes a strong dissemination plan to report on the results, not only to the scientific community, but also to potential users and non-specialized audience.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/690917
Start date: 01-02-2016
End date: 31-01-2020
Total budget - Public funding: 238 500,00 Euro - 139 500,00 Euro
Cordis data

Original description

The PhotoFluo project consists in a consortium of three teams (two from Europe and one from Canada) committed to work for developing novel fluoropolymers suitable for optical and electronic devices, membranes for fuel cells and Li batteries, microfluidics, and biomaterials. This ambitious goal will be achieved starting from designing new perfluoropolyalkylether building blocks (PFPAE) improving safety (not bioaccumulative like perfluoroalkylics) and having chemical inertness, flexibility in a wide temperature range, very low refractive index and wettability. PFPAE will be chain extended to tune final properties; exploiting OH functionalities, these precursors will be functionalized to make telechelic macromonomers for suitable crosslinking (via both radical and ionic processes). The polymers will be synthesized by photoinduced polymerization, chosen as an efficient and eco-friendly process: the polymer formation is fast (no more than minutes compared to hours requested by thermal processes), is solvent free, is carried out at room temperature consuming low amount of energy, permits spatial resolution, as it mainly occurs in the illuminated areas. After obtaining an original portfolio of PFPAE polymers, they will be fully characterized and tested in view of innovate applications.
The project is conducted by research groups with a relevant scientific record in the fields: (i) fluorochemistry (TWU, Canada), (ii) photopolymerization (iii) polymer science (POLITO, Italy and ENSCM, France). The combination of expertises makes the objective feasible. For the implementation of the program, 24 secondments are planned to exploit the complementarities of the different expertises of each groups, to share them and to reinforce young researchers career. The project includes a strong dissemination plan to report on the results, not only to the scientific community, but also to potential users and non-specialized audience.

Status

CLOSED

Call topic

MSCA-RISE-2015

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2015
MSCA-RISE-2015