SSEFR | Single-Site Electrocatalytic Flow Reactor for C-C Coupling

Summary
One of the greatest challenges of our generation is to implement sustainable and ‘energy smart’ chemical manufacturing processes. This can be accomplished via the electrification of the chemical industry, where electrons serve as a clean redox reagent to drive processes under mild conditions. This would avoid stoichiometric amounts of reagent waste from toxic chemical oxidants/reductants, and help resolve intermittency issues associated with renewables, as excess supply could be directed and stored into a stable chemical bond. However, to reach this goal, efficient and selective electrocatalysts are required. ‘Single-site catalysts’ today represent a new frontier, devised as a means to circumvent the issues regarding the non-uniformity and multi-faceted nature of conventional heterogeneous catalysts, which often experience poor selectivity towards the targeted reaction. Merging the benefits of electro- and single-site catalysis into a complete heterogeneous system is thus a highly innovative and sustainable approach towards modernising synthetic processes. In this MSCA action, I will therefore design novel, single-site, heterogeneous electrocatalysts, comprised of earth-abundant components, for conducting valorised and energy-storing C-C coupling reactions under continuous-flow conditions. In particular, my first objective will be to acquire fundamental insight into the design, development and understanding of precious-metal-free single-site electrocatalytic systems for the purposes of conducting such organic transformations. This project will then go a step further, to rationally engineer and manufacture catalytic flow reactors, in order to intensify the targeted process via the numerous benefits that flow chemistry offers in place of conventional batch electrochemical cells.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101031710
Start date: 01-05-2021
End date: 31-05-2023
Total budget - Public funding: 171 473,28 Euro - 171 473,00 Euro
Cordis data

Original description

One of the greatest challenges of our generation is to implement sustainable and ‘energy smart’ chemical manufacturing processes. This can be accomplished via the electrification of the chemical industry, where electrons serve as a clean redox reagent to drive processes under mild conditions. This would avoid stoichiometric amounts of reagent waste from toxic chemical oxidants/reductants, and help resolve intermittency issues associated with renewables, as excess supply could be directed and stored into a stable chemical bond. However, to reach this goal, efficient and selective electrocatalysts are required. ‘Single-site catalysts’ today represent a new frontier, devised as a means to circumvent the issues regarding the non-uniformity and multi-faceted nature of conventional heterogeneous catalysts, which often experience poor selectivity towards the targeted reaction. Merging the benefits of electro- and single-site catalysis into a complete heterogeneous system is thus a highly innovative and sustainable approach towards modernising synthetic processes. In this MSCA action, I will therefore design novel, single-site, heterogeneous electrocatalysts, comprised of earth-abundant components, for conducting valorised and energy-storing C-C coupling reactions under continuous-flow conditions. In particular, my first objective will be to acquire fundamental insight into the design, development and understanding of precious-metal-free single-site electrocatalytic systems for the purposes of conducting such organic transformations. This project will then go a step further, to rationally engineer and manufacture catalytic flow reactors, in order to intensify the targeted process via the numerous benefits that flow chemistry offers in place of conventional batch electrochemical cells.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships