GEAGAM | Geophysical Exploration using Advanced GAlerkin Methods

Summary
The main objective of this Marie Curie RISE action is to improve and exchange interdisciplinary knowledge on applied mathematics, high performance computing, and geophysics to be able to better simulate and understand the materials composing the Earth's subsurface. This is essential for a variety of applications such as CO2 storage, hydrocarbon extraction, mining, and geothermal energy production, among others. All these problems have in common the need to obtain an accurate characterization of the Earth's subsurface, and to achieve this goal, several complementary areas will be studied, including the mathematical foundations of various high-order Galerkin multiphysics simulation methods, the efficient computer implementation of these methods in large parallel machines and GPUs, and some crucial geophysical aspects such as the design of measurement acquisition systems in different scenarios.
Results will be widely disseminated through publications, workshops, post-graduate courses to train new researchers, a dedicated webpage, and visits to companies working in the area. In that way, we will perform an important role in technology transfer between the most advanced numerical methods and mathematics of the moment and the area of applied geophysics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/644202
Start date: 01-01-2015
End date: 31-12-2017
Total budget - Public funding: 580 500,00 Euro - 580 500,00 Euro
Cordis data

Original description

The main objective of this Marie Curie RISE action is to improve and exchange interdisciplinary knowledge on applied mathematics, high performance computing, and geophysics to be able to better simulate and understand the materials composing the Earth's subsurface. This is essential for a variety of applications such as CO2 storage, hydrocarbon extraction, mining, and geothermal energy production, among others. All these problems have in common the need to obtain an accurate characterization of the Earth's subsurface, and to achieve this goal, several complementary areas will be studied, including the mathematical foundations of various high-order Galerkin multiphysics simulation methods, the efficient computer implementation of these methods in large parallel machines and GPUs, and some crucial geophysical aspects such as the design of measurement acquisition systems in different scenarios.
Results will be widely disseminated through publications, workshops, post-graduate courses to train new researchers, a dedicated webpage, and visits to companies working in the area. In that way, we will perform an important role in technology transfer between the most advanced numerical methods and mathematics of the moment and the area of applied geophysics.

Status

CLOSED

Call topic

MSCA-RISE-2014

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2014
MSCA-RISE-2014