Summary
The advanced applications in 5G, such as Internet of Things, smart building, and smart city, are driving the growth of indoor broadband communications. Small cell is a promising technology to address capacity crunch problem in-building. Glass is a popular material widely used in modern buildings. Considering the factors of aesthetics and stability, embedding antennas into glass can be a good choice for deploying small cells indoors. However, how the glass impacts the wireless performance of a glass embedded antenna has not been well investigated. In this project, we will study the influence of EM properties of glass on the wireless performance and will design and optimise glass to achieve desirable wireless performance while maintaining acceptable optical and thermal properties. First, we will define measurable wireless performance metrics for glass embedded antennas, where the radiation efficiency, bandwidth, radiation pattern, coverage, and signal to interference plus noise ratio will be taken into account. Then, we will bridge the gap between ingredient ratios and structures of glass and the wireless performance of the embedded antenna. Three glass structures including coated glass, laminated glass and doping glass will be modeled. Finally, we will develop a method that can obtain a trade-off among wireless, optical and thermal performances of glasses. The ingredient ratio and structure of glass will be optimised in term of wireless performance under the constraints of optical and thermal performances, so that the glass can be multifunctional and smart. After this project, the benefits and feasibility of glass embedded antenna arrays can be assessed and the key technology of optimising glass embedded antennas can be established.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/843133 |
Start date: | 10-10-2019 |
End date: | 09-10-2021 |
Total budget - Public funding: | 224 933,76 Euro - 224 933,00 Euro |
Cordis data
Original description
The advanced applications in 5G, such as Internet of Things, smart building, and smart city, are driving the growth of indoor broadband communications. Small cell is a promising technology to address capacity crunch problem in-building. Glass is a popular material widely used in modern buildings. Considering the factors of aesthetics and stability, embedding antennas into glass can be a good choice for deploying small cells indoors. However, how the glass impacts the wireless performance of a glass embedded antenna has not been well investigated. In this project, we will study the influence of EM properties of glass on the wireless performance and will design and optimise glass to achieve desirable wireless performance while maintaining acceptable optical and thermal properties. First, we will define measurable wireless performance metrics for glass embedded antennas, where the radiation efficiency, bandwidth, radiation pattern, coverage, and signal to interference plus noise ratio will be taken into account. Then, we will bridge the gap between ingredient ratios and structures of glass and the wireless performance of the embedded antenna. Three glass structures including coated glass, laminated glass and doping glass will be modeled. Finally, we will develop a method that can obtain a trade-off among wireless, optical and thermal performances of glasses. The ingredient ratio and structure of glass will be optimised in term of wireless performance under the constraints of optical and thermal performances, so that the glass can be multifunctional and smart. After this project, the benefits and feasibility of glass embedded antenna arrays can be assessed and the key technology of optimising glass embedded antennas can be established.Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)