FireCracker | Reuse of Waste Materials for Fire-Spalling-Proof and Crack-Resistant Sustainable Concrete

Summary
Fire-induced explosive spalling (violent peeling-off of concrete cover) and plastic shrinkage cracking are major issues for concrete infrastructure. Tunnels and buildings can experience catastrophic failure due to fire spalling, as well as premature deterioration due to cracking, leading to huge economic costs and loss of life. In any new project, EU directives and codes of practice require adequate solutions for the spalling/cracking problems whilst all major existing road tunnels need to be upgraded. However, the mechanisms of fire spalling and shrinkage cracking are not well understood, and there are no guaranteed spalling/cracking prevention measures.

This fellowship aims to develop: (1) a better understanding of the complex mechanism behind fire spalling and shrinkage cracking in concrete, and (2) novel sustainable cracking/spalling-mitigation solutions by using waste polymer fibres and greener cementitious binders produced from industrial by-products. If successful, this will enable the replacement of the currently used manufactured polypropylene fibres with waste materials of equal or better performance, thereby providing a possible annual reduction of 0.5 million tonnes of CO2 in an EU market worth about £50 million per annum.

The microstructural changes of concrete during the fire attack/shrinkage cracking will be monitored using multi-advanced techniques (e.g. X-ray Computed Tomography) and the revealed mechanisms will help develop predictive models and design recommendations. The host organisation has world-leading expertise in the fields of fire and concrete engineering and it is currently coordinating an EU project (ANAGENNISI) on the reuse of tyre components in concrete. This project, along with training schemes available at the host organization, will provide a unique opportunity for the fellow to develop his career as an independent researcher.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/750764
Start date: 01-09-2017
End date: 31-08-2019
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

Fire-induced explosive spalling (violent peeling-off of concrete cover) and plastic shrinkage cracking are major issues for concrete infrastructure. Tunnels and buildings can experience catastrophic failure due to fire spalling, as well as premature deterioration due to cracking, leading to huge economic costs and loss of life. In any new project, EU directives and codes of practice require adequate solutions for the spalling/cracking problems whilst all major existing road tunnels need to be upgraded. However, the mechanisms of fire spalling and shrinkage cracking are not well understood, and there are no guaranteed spalling/cracking prevention measures.

This fellowship aims to develop: (1) a better understanding of the complex mechanism behind fire spalling and shrinkage cracking in concrete, and (2) novel sustainable cracking/spalling-mitigation solutions by using waste polymer fibres and greener cementitious binders produced from industrial by-products. If successful, this will enable the replacement of the currently used manufactured polypropylene fibres with waste materials of equal or better performance, thereby providing a possible annual reduction of 0.5 million tonnes of CO2 in an EU market worth about £50 million per annum.

The microstructural changes of concrete during the fire attack/shrinkage cracking will be monitored using multi-advanced techniques (e.g. X-ray Computed Tomography) and the revealed mechanisms will help develop predictive models and design recommendations. The host organisation has world-leading expertise in the fields of fire and concrete engineering and it is currently coordinating an EU project (ANAGENNISI) on the reuse of tyre components in concrete. This project, along with training schemes available at the host organization, will provide a unique opportunity for the fellow to develop his career as an independent researcher.

Status

TERMINATED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016