Ultra-LightCon-3D | Ultra-Lightweight Concrete for 3D printing technologies

Summary
The construction industry does not follow the same enlightened path as other fields of science and has thus suffered a technology bypass, relying on centuries-old processes and procedures to manage complex modern projects. In conventional concrete construction projects, more than 60% of the total cost is spent on the formwork. One of the technologies which can revolutionize our perception and approach to construction, is 3D printing of concrete. 3D printing, also referred to as Additive Manufacturing (AM), is a technology which builds solid parts via a layer-by-layer process. Since in 3D printing, no formwork is required, and a short project time is required due to continuous work done by the printer, a dramatic reduction in the project cost and improvement of workers’ safety can be achieved. Up to date, much research has been conducted in the field of printing technique, while design of proper insulation of printed walls has gathered little attention. Although, this issue is highly important due to gradually tightening EU regulations. Therefore, proposed project is aiming to fill the gap in knowledge and introduce for the first-time insulating ultra-lightweight concrete (ULWC) material for AM. By proposed interdisciplinary methodology, based on the experimental and numerical methods, in micro- and macro-scales technology, a multi-scale tool enabling to produce advanced 3D printed wall systems. Multi-scale tool will allow to develop 3D models of ULWCs with optimized mechanical and insulating properties. Hence, limited amount of required field and labor works will be necessary, thus further decrement of the final concrete cost and waste production will be achieved. Through the interdisciplinary approach and establishing industrial cooperation, this project will contribute towards development and production of energy saving constructions in accordance with EU Energy Efficiency Strategy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841592
Start date: 01-07-2019
End date: 30-06-2021
Total budget - Public funding: 162 806,40 Euro - 162 806,00 Euro
Cordis data

Original description

The construction industry does not follow the same enlightened path as other fields of science and has thus suffered a technology bypass, relying on centuries-old processes and procedures to manage complex modern projects. In conventional concrete construction projects, more than 60% of the total cost is spent on the formwork. One of the technologies which can revolutionize our perception and approach to construction, is 3D printing of concrete. 3D printing, also referred to as Additive Manufacturing (AM), is a technology which builds solid parts via a layer-by-layer process. Since in 3D printing, no formwork is required, and a short project time is required due to continuous work done by the printer, a dramatic reduction in the project cost and improvement of workers’ safety can be achieved. Up to date, much research has been conducted in the field of printing technique, while design of proper insulation of printed walls has gathered little attention. Although, this issue is highly important due to gradually tightening EU regulations. Therefore, proposed project is aiming to fill the gap in knowledge and introduce for the first-time insulating ultra-lightweight concrete (ULWC) material for AM. By proposed interdisciplinary methodology, based on the experimental and numerical methods, in micro- and macro-scales technology, a multi-scale tool enabling to produce advanced 3D printed wall systems. Multi-scale tool will allow to develop 3D models of ULWCs with optimized mechanical and insulating properties. Hence, limited amount of required field and labor works will be necessary, thus further decrement of the final concrete cost and waste production will be achieved. Through the interdisciplinary approach and establishing industrial cooperation, this project will contribute towards development and production of energy saving constructions in accordance with EU Energy Efficiency Strategy.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018