PIANO | Nanoparticle-Based Imaging and Therapy of Chronic Pain in the Dorsal Root Ganglia (DRG)

Summary
Chronic pain is a debilitating disease, which affects approximately 1.5 billion people worldwide, and of those, approximately
4% suffer from neuropathic pain. Neuropathic pain is often described as a shooting or burning pain that can come and then
disappear but equally it may become chronic, where the pain may become unrelenting and severe. It often is the result of
nerve damage or a malfunctioning nervous system. Additionally there is the impact upon society where the costs related to
disability allowance, treatment, lost wages and productivity impacts the economy. Current treatments for chronic pain are not
fully reliable and there is a severe lack of tools to diagnose or visualise the pain process within the dorsal root ganglia
(DRG). Humans have 62 DRGs which are the first relay stations in the pain pathway. Local targeted treatment at the level of
those DRGs involved in the pain process is the solution to circumvent side effects and optimise treatment. We aim to identify
involved DRGs by visualising cells or molecules in the DRG which are directly or indirectly associated with the generation of
pain. We will use a novel method of nanoparticles targeted towards pain-associated cells or molecules in the DRG. A vast
amount of neuropathic pain studies have shown an eminent infiltration of macrophages into affected DRGs. These
nanoparticles will be specifically designed to target initially the macrophages in the DRG, encapsulating both therapeutic
payloads and imaging contrast reagents to monitor pain-associated activities. The goal of PIANO is therefore to facilitate a
state-of-art approach to visualisation of neuropathic pain / inflammation at DRG sites as well as to simultaneously release
analgesic molecules from the nanoparticles.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/956477
Start date: 01-03-2021
End date: 28-02-2025
Total budget - Public funding: 3 565 136,22 Euro - 3 565 136,00 Euro
Cordis data

Original description

Chronic pain is a debilitating disease, which affects approximately 1.5 billion people worldwide, and of those, approximately
4% suffer from neuropathic pain. Neuropathic pain is often described as a shooting or burning pain that can come and then
disappear but equally it may become chronic, where the pain may become unrelenting and severe. It often is the result of
nerve damage or a malfunctioning nervous system. Additionally there is the impact upon society where the costs related to
disability allowance, treatment, lost wages and productivity impacts the economy. Current treatments for chronic pain are not
fully reliable and there is a severe lack of tools to diagnose or visualise the pain process within the dorsal root ganglia
(DRG). Humans have 62 DRGs which are the first relay stations in the pain pathway. Local targeted treatment at the level of
those DRGs involved in the pain process is the solution to circumvent side effects and optimise treatment. We aim to identify
involved DRGs by visualising cells or molecules in the DRG which are directly or indirectly associated with the generation of
pain. We will use a novel method of nanoparticles targeted towards pain-associated cells or molecules in the DRG. A vast
amount of neuropathic pain studies have shown an eminent infiltration of macrophages into affected DRGs. These
nanoparticles will be specifically designed to target initially the macrophages in the DRG, encapsulating both therapeutic
payloads and imaging contrast reagents to monitor pain-associated activities. The goal of PIANO is therefore to facilitate a
state-of-art approach to visualisation of neuropathic pain / inflammation at DRG sites as well as to simultaneously release
analgesic molecules from the nanoparticles.

Status

SIGNED

Call topic

MSCA-ITN-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2020
MSCA-ITN-2020