STABREP | Geometric Models for Calabi-Yau Algebras and Homological Mirror Symmetry

Summary
In this project, I will establish new connections between cluster algebras, mirror symmetry and representation theory through the introduction of geometric models.

Mirror symmetry is a natural phenomenon, first observed in superstring theory, consisting of two main approaches: the A-model, focused on the symplectic side of a Calabi-Yau manifold X, and the B-model, focused on the complex side of the manifold. Mirror symmetry is a duality between the two models. Based on this, Kontsevich formulated his famous homological mirror symmetry conjecture for categories. In this conjecture, the A-model is the Fukaya category of X, and the B-model is the derived category of coherent sheaves of X^. Cluster algebras were introduced in the early 2000s to provide a combinatorial framework for dual canonical bases. Many new ideas in representation theory have their origin in cluster algebras, bringing together category theory, particularly Calabi-Yau categories, combinatorics and the geometry of Riemann surfaces. In exciting recent developments cluster theory and homological mirror symmetry have been linked through scattering diagrams, opening up both theories.

In this project, I will study the connections between cluster combinatorics and scattering diagrams through Calabi-Yau algebras, which appear in a natural way in cluster theory and mirror symmetry. I will develop geometric models for the representation theory of Calabi-Yau algebras encoding, in particular, their (co)homology. This will lead to a complete understanding of these algebras and their role in the mirror symmetry program.
Dimer models are intrinsically linked to both cluster algebras and mirror symmetry. As part of my project, I will generalize dimer models to the general setting of special multiserial algebras. Both Calabi-Yau algebras and special multiserial algebras are of wild representation type and my geometric models will lead the way to an understanding of stability conditions for wild algebras.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/838316
Start date: 01-09-2020
End date: 29-12-2022
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

In this project, I will establish new connections between cluster algebras, mirror symmetry and representation theory through the introduction of geometric models.

Mirror symmetry is a natural phenomenon, first observed in superstring theory, consisting of two main approaches: the A-model, focused on the symplectic side of a Calabi-Yau manifold X, and the B-model, focused on the complex side of the manifold. Mirror symmetry is a duality between the two models. Based on this, Kontsevich formulated his famous homological mirror symmetry conjecture for categories. In this conjecture, the A-model is the Fukaya category of X, and the B-model is the derived category of coherent sheaves of X^. Cluster algebras were introduced in the early 2000s to provide a combinatorial framework for dual canonical bases. Many new ideas in representation theory have their origin in cluster algebras, bringing together category theory, particularly Calabi-Yau categories, combinatorics and the geometry of Riemann surfaces. In exciting recent developments cluster theory and homological mirror symmetry have been linked through scattering diagrams, opening up both theories.

In this project, I will study the connections between cluster combinatorics and scattering diagrams through Calabi-Yau algebras, which appear in a natural way in cluster theory and mirror symmetry. I will develop geometric models for the representation theory of Calabi-Yau algebras encoding, in particular, their (co)homology. This will lead to a complete understanding of these algebras and their role in the mirror symmetry program.
Dimer models are intrinsically linked to both cluster algebras and mirror symmetry. As part of my project, I will generalize dimer models to the general setting of special multiserial algebras. Both Calabi-Yau algebras and special multiserial algebras are of wild representation type and my geometric models will lead the way to an understanding of stability conditions for wild algebras.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018