NEVULA | Understanding selective neuronal vulnerability in Alzheimer’s disease

Summary
The aim of this action is to understand the mechanisms behind the susceptibility of enthorinal cortex II (ECII) neurons to neurofibrillary tangle (NFT) formation in Alzheimer´s disease. To do so we will modulate the expression of the genes that according to NetWAS (Network-wide Association Study) are more directly involved in NFT formation in ECII neurons.

Understanding why the pathological lesions that lead to neurodegeneration appear earlier in some specific neurons of the human brain is one of the major challenges in the neuroscience field.

Prof. Greengard´s lab has generated a transgenic mouse that allows the immunoprecipitation of ribosome-bound mRNAs specifically from ECII neurons (ECII-bacTRAP mice). We will perform AAV stereotaxic injections in the enthorinal cortex of these mice followed by RNA-seq to determine how the modulation of our target genes affects ECII neurons expression profile. We will also explore whether our intervention can influence ECII neurons susceptibility to NFT in P301S AD mice. The results obtained in mice will be validated by immunofluorescence and in situ hybridization studies in human samples from control and AD patients at different Braak stages.

Our results could add extremely relevant information on the mechanisms underlying AD pathogenesis and reveal these genes as new therapeutic targets for the disease.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/799638
Start date: 01-09-2018
End date: 01-10-2021
Total budget - Public funding: 247 059,00 Euro - 247 059,00 Euro
Cordis data

Original description

The aim of this action is to understand the mechanisms behind the susceptibility of enthorinal cortex II (ECII) neurons to neurofibrillary tangle (NFT) formation in Alzheimer´s disease. To do so we will modulate the expression of the genes that according to NetWAS (Network-wide Association Study) are more directly involved in NFT formation in ECII neurons.

Understanding why the pathological lesions that lead to neurodegeneration appear earlier in some specific neurons of the human brain is one of the major challenges in the neuroscience field.

Prof. Greengard´s lab has generated a transgenic mouse that allows the immunoprecipitation of ribosome-bound mRNAs specifically from ECII neurons (ECII-bacTRAP mice). We will perform AAV stereotaxic injections in the enthorinal cortex of these mice followed by RNA-seq to determine how the modulation of our target genes affects ECII neurons expression profile. We will also explore whether our intervention can influence ECII neurons susceptibility to NFT in P301S AD mice. The results obtained in mice will be validated by immunofluorescence and in situ hybridization studies in human samples from control and AD patients at different Braak stages.

Our results could add extremely relevant information on the mechanisms underlying AD pathogenesis and reveal these genes as new therapeutic targets for the disease.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017