EVOCATION | Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication

Summary
The project will create a leading European-wide doctoral Collegium for research in Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication (EVOCATION). The Collegium will train the next generation of creative, entrepreneurial and innovative experts who will be equipped with the necessary skills and competences to face current and future major challenges in scalable and high-fidelity geometry and material acquisition, extraction of structure and semantic information, processing, visualization, 3D display and 3D fabrication in professional and consumer applications. In the future, the ESRs will lead research and development of new visual and geometric computing methods in the widest variety of applications, ranging from industrial design to humanities, from medical training to urban assessment, and from creative industries to education methodologies. The EVOCATION network of public and private entities will be naturally multidisciplinary and multi-institutional and will: (a) promote, through domain-specific challenges, the culture of open science and multidisciplinary research applied to concrete problems of the real world, in strict cooperation with end users in engineering, science and humanities; (b) advance the state-of-the-art in geometry and material acquisition, geometry processing and semantic feature extraction, interactive visualization, computational fabrication, and high-bandwidth/3D display systems; (c) bridge complementary approaches for cost-effective data digitization, visualization, fabrication, and display through the integration of different methodologies in the 3D capture, processing and fabrication pipeline; (d) demonstrate the feasibility and efficiency of scalable cost-effective end-to-end techniques to virtually and physically capture and create objects with complex shape and appearance; (e) increase awareness of the benefits of advanced visual/geometric computing technology in both professional and consumer domains.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/813170
Start date: 01-10-2018
End date: 31-05-2023
Total budget - Public funding: 3 639 335,04 Euro - 3 639 335,00 Euro
Cordis data

Original description

The project will create a leading European-wide doctoral Collegium for research in Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication (EVOCATION). The Collegium will train the next generation of creative, entrepreneurial and innovative experts who will be equipped with the necessary skills and competences to face current and future major challenges in scalable and high-fidelity geometry and material acquisition, extraction of structure and semantic information, processing, visualization, 3D display and 3D fabrication in professional and consumer applications. In the future, the ESRs will lead research and development of new visual and geometric computing methods in the widest variety of applications, ranging from industrial design to humanities, from medical training to urban assessment, and from creative industries to education methodologies. The EVOCATION network of public and private entities will be naturally multidisciplinary and multi-institutional and will: (a) promote, through domain-specific challenges, the culture of open science and multidisciplinary research applied to concrete problems of the real world, in strict cooperation with end users in engineering, science and humanities; (b) advance the state-of-the-art in geometry and material acquisition, geometry processing and semantic feature extraction, interactive visualization, computational fabrication, and high-bandwidth/3D display systems; (c) bridge complementary approaches for cost-effective data digitization, visualization, fabrication, and display through the integration of different methodologies in the 3D capture, processing and fabrication pipeline; (d) demonstrate the feasibility and efficiency of scalable cost-effective end-to-end techniques to virtually and physically capture and create objects with complex shape and appearance; (e) increase awareness of the benefits of advanced visual/geometric computing technology in both professional and consumer domains.

Status

CLOSED

Call topic

MSCA-ITN-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2018
MSCA-ITN-2018