Summary
iP-OSTEO project focuses on development of novel cell-based scaffolds for bone and cartilage repair in patients with poor regenerative capacity. We are proposing technology combining iPSCs with improved regeneration capacity combined with nanostructured scaffolds based on electrospun scaffolds and drug delivery system stimulating cell regeneration based on electrosprayed and spray-dried particles. The system will deliver novel treatment method for older patients, for which the current cellular and cell-free methods are ineffective.
iP-OSTEO will reach its goals by creating an international and interdisciplinary training program. 7 companies (SMEs) and 7 academic institutions across European Union will join there forces though dedicated secondments. The activities will involve networking, research/training, workshop and dissemination secondments. The project has in total 239 secondments involving exchange of Early-stage and Experienced researchers. The consortium is bonded by Dr. Eva Filova – young scientist with experience in bone and cartilage tissue engineering.
The iP-OSTEO project will help in better integration of academic and industrial stakeholders across Europe and help diseased people by providing novel therapeutic methods. Nevertheless, project has 169 ESR secondment months leading to training of new generation of scientists with international connection and knowledge of intrasectorial enviroment.
iP-OSTEO will reach its goals by creating an international and interdisciplinary training program. 7 companies (SMEs) and 7 academic institutions across European Union will join there forces though dedicated secondments. The activities will involve networking, research/training, workshop and dissemination secondments. The project has in total 239 secondments involving exchange of Early-stage and Experienced researchers. The consortium is bonded by Dr. Eva Filova – young scientist with experience in bone and cartilage tissue engineering.
The iP-OSTEO project will help in better integration of academic and industrial stakeholders across Europe and help diseased people by providing novel therapeutic methods. Nevertheless, project has 169 ESR secondment months leading to training of new generation of scientists with international connection and knowledge of intrasectorial enviroment.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/824007 |
Start date: | 01-02-2019 |
End date: | 31-07-2024 |
Total budget - Public funding: | 1 099 400,00 Euro - 1 099 400,00 Euro |
Cordis data
Original description
iP-OSTEO project focuses on development of novel cell-based scaffolds for bone and cartilage repair in patients with poor regenerative capacity. We are proposing technology combining iPSCs with improved regeneration capacity combined with nanostructured scaffolds based on electrospun scaffolds and drug delivery system stimulating cell regeneration based on electrosprayed and spray-dried particles. The system will deliver novel treatment method for older patients, for which the current cellular and cell-free methods are ineffective.iP-OSTEO will reach its goals by creating an international and interdisciplinary training program. 7 companies (SMEs) and 7 academic institutions across European Union will join there forces though dedicated secondments. The activities will involve networking, research/training, workshop and dissemination secondments. The project has in total 239 secondments involving exchange of Early-stage and Experienced researchers. The consortium is bonded by Dr. Eva Filova – young scientist with experience in bone and cartilage tissue engineering.
The iP-OSTEO project will help in better integration of academic and industrial stakeholders across Europe and help diseased people by providing novel therapeutic methods. Nevertheless, project has 169 ESR secondment months leading to training of new generation of scientists with international connection and knowledge of intrasectorial enviroment.
Status
SIGNEDCall topic
MSCA-RISE-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)