XP-RESILIENCE | EXTREME LOADING ANALYSIS OF PETROCHEMICAL PLANTS AND DESIGN OF METAMATERIAL-BASED SHIELDS FOR ENHANCED RESILIENCE

Summary
The tremendous impact of natural hazards, such as earthquakes, tsunamis, flooding, etc, which triggered technological accidents, referred to as natural-technological (NaTech) events, was demonstrated by: i) the recent Tohoku earthquake and the following Fukushima disaster in 2011; ii) the UK’s 2015 winter floods which topped £5bn, with thousands of families and businesses that faced financial problems because of inadequate or non-existent insurance. The NaTech problem is quite relevant as up to 10% of industrial accidents, involving the release of Chemical, Biological, Radiological, Nuclear and high-yield Explosives (CBRNE) substances, were triggered by natural hazards. To implement and support the Seveso II Directive 2012/18/EU which regulates the control of major accident hazards involving dangerous substances, XP-RESILIENCE intends to establish a network of individual research projects working towards Advanced Modelling and Protection –via metamaterial-based isolators/layouts- of Complex Engineering Systems for Disaster Reduction and Resilient Communities. In fact, today there is a stronger need than ever to grow researchers that combine a robust academic foundation in reliability/resilience with practical experiences, technological expertise with awareness of the socio-economical context and conviction to furthering research with an entrepreneurial spirit. Hence, the objective of XP-RESILIENCE is to offer innovative research training ground as well as attractive career development and knowledge exchange opportunities for Early Stage Researchers (ESRs) through cross-border and cross-sector mobility for future growth in Europe. XP-RESILIENCE is an inter/multi-disciplinary and intersectoral programme as it includes seven academic partners, one Institute of Applied Science and seven private companies from ten different European countries.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/721816
Start date: 01-09-2016
End date: 31-08-2020
Total budget - Public funding: 3 393 811,98 Euro - 3 393 811,00 Euro
Cordis data

Original description

The tremendous impact of natural hazards, such as earthquakes, tsunamis, flooding, etc, which triggered technological accidents, referred to as natural-technological (NaTech) events, was demonstrated by: i) the recent Tohoku earthquake and the following Fukushima disaster in 2011; ii) the UK’s 2015 winter floods which topped £5bn, with thousands of families and businesses that faced financial problems because of inadequate or non-existent insurance. The NaTech problem is quite relevant as up to 10% of industrial accidents, involving the release of Chemical, Biological, Radiological, Nuclear and high-yield Explosives (CBRNE) substances, were triggered by natural hazards. To implement and support the Seveso II Directive 2012/18/EU which regulates the control of major accident hazards involving dangerous substances, XP-RESILIENCE intends to establish a network of individual research projects working towards Advanced Modelling and Protection –via metamaterial-based isolators/layouts- of Complex Engineering Systems for Disaster Reduction and Resilient Communities. In fact, today there is a stronger need than ever to grow researchers that combine a robust academic foundation in reliability/resilience with practical experiences, technological expertise with awareness of the socio-economical context and conviction to furthering research with an entrepreneurial spirit. Hence, the objective of XP-RESILIENCE is to offer innovative research training ground as well as attractive career development and knowledge exchange opportunities for Early Stage Researchers (ESRs) through cross-border and cross-sector mobility for future growth in Europe. XP-RESILIENCE is an inter/multi-disciplinary and intersectoral programme as it includes seven academic partners, one Institute of Applied Science and seven private companies from ten different European countries.

Status

CLOSED

Call topic

MSCA-ITN-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2016
MSCA-ITN-2016