CABOTioN | Cables for HVDC Offshore Transmission Networks

Summary
A sustainable energy network must comply with the usage of offshore wind farms and the sharing of surplus renewable energy without a dangerous carbon footprint. Amongst the possible technologies to foster the energy transition one way is to rely on HVDC transmission resorting to submarine cables for energy transfer. However, field measurements show the lack of confidence in simulation results with regard to the voltage and current profiles on the core, sheath or armour. A proper representation of the magnetic behaviour of the armour and the impact of the sea and seabed for an overall assessment of the transient behaviour remain a challenge.
The overall objective of CABOTioN is the development of an innovative approach for identification of per-unit-length parameters of submarine DC cables and a straightforward interface with simulation tools. The applicant will resort to up-to-date formulations to design a special-purpose tool to compute electrical parameters considerably faster than the Finite Element Method without a significant loss of accuracy. Therefore, evaluations will be conducted to assess the enhancements achieved with a more accurate model and compared with the common practice and measurements.
Implemented at Aalborg University, and supervised by Prof Filipe da Silva and Prof Claus Bak, CABOTioN will bring outstanding competencies and utmost recognition internationally in the field of cable modelling. The secondment with Prof Correia de Barros will strengthen the competency as an independent researcher on a challenging theme.
A two-way transfer of knowledge is guaranteed since the applicant has a solid background on development of system models and network solvers and the supervisors have vast experience on challenging research projects. Therefore, CABOTioN will contribute to enhance the European scientific excellence on the development of cost-effective green projects to find new, better and more economical ways of building offshore transmission grids.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101031088
Start date: 01-09-2021
End date: 31-01-2024
Total budget - Public funding: 219 312,00 Euro - 219 312,00 Euro
Cordis data

Original description

A sustainable energy network must comply with the usage of offshore wind farms and the sharing of surplus renewable energy without a dangerous carbon footprint. Amongst the possible technologies to foster the energy transition one way is to rely on HVDC transmission resorting to submarine cables for energy transfer. However, field measurements show the lack of confidence in simulation results with regard to the voltage and current profiles on the core, sheath or armour. A proper representation of the magnetic behaviour of the armour and the impact of the sea and seabed for an overall assessment of the transient behaviour remain a challenge.
The overall objective of CABOTioN is the development of an innovative approach for identification of per-unit-length parameters of submarine DC cables and a straightforward interface with simulation tools. The applicant will resort to up-to-date formulations to design a special-purpose tool to compute electrical parameters considerably faster than the Finite Element Method without a significant loss of accuracy. Therefore, evaluations will be conducted to assess the enhancements achieved with a more accurate model and compared with the common practice and measurements.
Implemented at Aalborg University, and supervised by Prof Filipe da Silva and Prof Claus Bak, CABOTioN will bring outstanding competencies and utmost recognition internationally in the field of cable modelling. The secondment with Prof Correia de Barros will strengthen the competency as an independent researcher on a challenging theme.
A two-way transfer of knowledge is guaranteed since the applicant has a solid background on development of system models and network solvers and the supervisors have vast experience on challenging research projects. Therefore, CABOTioN will contribute to enhance the European scientific excellence on the development of cost-effective green projects to find new, better and more economical ways of building offshore transmission grids.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)