IMPRESS | Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Summary
The research proposal addresses the challenges of optimum architecture, power production and operation for distributed renewable energy systems with storage. The proposal explores the efficient arrangement of decentralized power plants using photovoltaic panels and battery storage for a long-term increase of renewable generation. The critical issues such are the increased energy yield, minimization of cost of energy and availability will be addressed.
A detailed techno-economic analysis will be performed to identify the cost effective superior distributed architecture suitable for integrated photovoltaic and battery systems. Multi-objective optimization study and validation will be performed that ensures actual optimization of energy production in the integrated environment. An integrated diagnostic method will be developed for real-time performance monitoring to improve the availability of the complex integrated energy system. Two secondment partners are identified to obtain necessary data and expertise in the field of research.
The action will result in identifying an optimum solution in terms of control, operation and availability, especially for local renewable energy generation and storage. Novel algorithms for optimization for the operation and control of the modular energy sources with storage will be proposed. A real-time monitoring and diagnostic algorithm for performance monitoring, early failure detection and aging of integrated PV and battery solution will be developed. The research will provide newer insights on optimized power flow and control operation in complex interconnected distributed renewable energy sources considering the storage.
Besides the technological significance and scientific value, the proposed research project is opportune and timely placed within the EU renewable energy directive and focuses on the core issue in line with the aims of EU energy research projects.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/845122
Start date: 01-10-2019
End date: 30-09-2021
Total budget - Public funding: 219 312,00 Euro - 219 312,00 Euro
Cordis data

Original description

The research proposal addresses the challenges of optimum architecture, power production and operation for distributed renewable energy systems with storage. The proposal explores the efficient arrangement of decentralized power plants using photovoltaic panels and battery storage for a long-term increase of renewable generation. The critical issues such are the increased energy yield, minimization of cost of energy and availability will be addressed.
A detailed techno-economic analysis will be performed to identify the cost effective superior distributed architecture suitable for integrated photovoltaic and battery systems. Multi-objective optimization study and validation will be performed that ensures actual optimization of energy production in the integrated environment. An integrated diagnostic method will be developed for real-time performance monitoring to improve the availability of the complex integrated energy system. Two secondment partners are identified to obtain necessary data and expertise in the field of research.
The action will result in identifying an optimum solution in terms of control, operation and availability, especially for local renewable energy generation and storage. Novel algorithms for optimization for the operation and control of the modular energy sources with storage will be proposed. A real-time monitoring and diagnostic algorithm for performance monitoring, early failure detection and aging of integrated PV and battery solution will be developed. The research will provide newer insights on optimized power flow and control operation in complex interconnected distributed renewable energy sources considering the storage.
Besides the technological significance and scientific value, the proposed research project is opportune and timely placed within the EU renewable energy directive and focuses on the core issue in line with the aims of EU energy research projects.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018