MycUpscaling | Upscaling in vitro arbuscular mycorrhizal fungi inoculum production via combinatorial lipid metabolic engineering of host plants

Summary
Major scientific challenges nowadays are to preserve the environment, reduce global warming and grow more food to meet the global demand. Mass-producing the right soil microbiota essential to plant health and yield has the potential to be a key part of the next big revolution in the development of sustainable agriculture and food security. Arbuscular mycorrhizal fungi (AMF) are among the most ancient, widespread and functionally important symbioses on Earth that help feed the world. Yet, mass-production of clean (i.e. in vitro produced), safe and robust inoculum at affordable costs remains a critical challenge. MycUpscaling addresses the challenging question of what are the genes responsible for increasing triacylglycerides (TAGs) accumulation in the symbiotic interface and increasing spore numbers to create a novel generation of high-quality and cost-effective AMF inoculants for application in agroecosystems.

The project will include combinatorial lipid metabolic engineering, selection of mycorrhized TAG-accumulating hosts, in vitro and in vivo lipid flux analysis, and in vitro spore domestication. We hypothesize that engineering lipid metabolism in mycorrhized plants will (i) increase TAG-based carbon sources in AMF, with spores accumulating more lipids for a higher root-colonization potential (bio-fortification=best quality), ii) stimulate the asexual reproduction machinery to produce more spores in plates and bioreactors (biomass production=high quantity), decreasing cost-fees of in vitro spore production systems (cost-efficiency=industry profitable).

MycUpscaling will employ an inter-disciplinary approach combining expertise of the researcher in cell engineering and his supervisors in plant lipid flux monitoring (WSU, USA) and large-scale AMF production (UCLouvain, Belgium). This project will enable the researcher to interact with key leading experts, re-inforce skills and competences, and forge a mature and outstanding international research carrer.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101018013
Start date: 01-09-2022
End date: 31-08-2025
Total budget - Public funding: 248 425,92 Euro - 248 425,00 Euro
Cordis data

Original description

Major scientific challenges nowadays are to preserve the environment, reduce global warming and grow more food to meet the global demand. Mass-producing the right soil microbiota essential to plant health and yield has the potential to be a key part of the next big revolution in the development of sustainable agriculture and food security. Arbuscular mycorrhizal fungi (AMF) are among the most ancient, widespread and functionally important symbioses on Earth that help feed the world. Yet, mass-production of clean (i.e. in vitro produced), safe and robust inoculum at affordable costs remains a critical challenge. MycUpscaling addresses the challenging question of what are the genes responsible for increasing triacylglycerides (TAGs) accumulation in the symbiotic interface and increasing spore numbers to create a novel generation of high-quality and cost-effective AMF inoculants for application in agroecosystems.

The project will include combinatorial lipid metabolic engineering, selection of mycorrhized TAG-accumulating hosts, in vitro and in vivo lipid flux analysis, and in vitro spore domestication. We hypothesize that engineering lipid metabolism in mycorrhized plants will (i) increase TAG-based carbon sources in AMF, with spores accumulating more lipids for a higher root-colonization potential (bio-fortification=best quality), ii) stimulate the asexual reproduction machinery to produce more spores in plates and bioreactors (biomass production=high quantity), decreasing cost-fees of in vitro spore production systems (cost-efficiency=industry profitable).

MycUpscaling will employ an inter-disciplinary approach combining expertise of the researcher in cell engineering and his supervisors in plant lipid flux monitoring (WSU, USA) and large-scale AMF production (UCLouvain, Belgium). This project will enable the researcher to interact with key leading experts, re-inforce skills and competences, and forge a mature and outstanding international research carrer.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships