Champagne | Characterisation of high altitude metabolic phenotype driven by unique Andean genetics.

Summary
High-altitude hypoxia is a known physiological stressor. Genetic signals associated with high-altitude adaptation have been identified in populations native to this environment, yet the links to molecular/physiological processes affording protection against hypoxic stress, specifically those related to metabolic function, remain largely unknown. Conversely, a significant proportion of Andean highlanders develop chronic mountain sickness (CMS), characterised by excessive erythrocytosis and cardiometabolic dysregulation.

I will combine genotype analysis, RNA sequencing, cardiopulmonary exercise testing, metabolic/lipidomic profiling and mitochondrial function analyses to study high-altitude Andeans with and without excessive erythrocytosis, in order to identify underlying differences in (mal)adaptive (patho)physiology. Applying methods developed by the partner host laboratory, I will examine pre-selected candidate gene variants along with skeletal muscle metabolic phenotype, probed through assessment of mitochondrial capacity for substrate metabolism. Metabolomic/lipidomic analysis of muscle and plasma alongside measures of whole-body exercise performance will demonstrate the impact of these functional changes in vivo.

This multidisciplinary approach will explore the links between adaptive genetic polymorphisms and molecular/physiological processes affording protection against hypoxic stress. It has the potential to further our understanding of the individual metabolic responses to hypoxia by distinguishing healthy adaptive signals from disease-related signatures, and link genetic, metabolic and whole-body physiological function data in the context of CMS. It will provide a foundation for addressing fundamental questions concerning human evolution whilst improving our understanding of highly prevalent hypoxia-related conditions and the metabolic aetiology of these.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/890768
Start date: 01-10-2020
End date: 31-10-2023
Total budget - Public funding: 271 732,80 Euro - 271 732,00 Euro
Cordis data

Original description

High-altitude hypoxia is a known physiological stressor. Genetic signals associated with high-altitude adaptation have been identified in populations native to this environment, yet the links to molecular/physiological processes affording protection against hypoxic stress, specifically those related to metabolic function, remain largely unknown. Conversely, a significant proportion of Andean highlanders develop chronic mountain sickness (CMS), characterised by excessive erythrocytosis and cardiometabolic dysregulation.

I will combine genotype analysis, RNA sequencing, cardiopulmonary exercise testing, metabolic/lipidomic profiling and mitochondrial function analyses to study high-altitude Andeans with and without excessive erythrocytosis, in order to identify underlying differences in (mal)adaptive (patho)physiology. Applying methods developed by the partner host laboratory, I will examine pre-selected candidate gene variants along with skeletal muscle metabolic phenotype, probed through assessment of mitochondrial capacity for substrate metabolism. Metabolomic/lipidomic analysis of muscle and plasma alongside measures of whole-body exercise performance will demonstrate the impact of these functional changes in vivo.

This multidisciplinary approach will explore the links between adaptive genetic polymorphisms and molecular/physiological processes affording protection against hypoxic stress. It has the potential to further our understanding of the individual metabolic responses to hypoxia by distinguishing healthy adaptive signals from disease-related signatures, and link genetic, metabolic and whole-body physiological function data in the context of CMS. It will provide a foundation for addressing fundamental questions concerning human evolution whilst improving our understanding of highly prevalent hypoxia-related conditions and the metabolic aetiology of these.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019