Summary
Building Information Modelling (BIM) as a product and process enables stakeholders across the built environment sector to create digital versions of real world assets (such as buildings, bridges and tunnels). The digital versions are commonly called 'digital twins'. When placed on the cloud, the digital twins can serve as a resilient and integrated repository of all asset data throughout their life-cycle. Such a repository is a key enabler in this sector of all upcoming IT waves, such as cloud computing, data analytics, participatory sensing, and smart infrastructure. The potential benefits have attracted interest from a wide array of end-users whose interests span from early design phases to operation and asset management, and from roads and bridges to industrial off-shore facilities. This has led to aggressive market penetration in the last decade. However, the full potential of BIM is currently exploited only in a fairly narrow range of applications. This is mainly due to the lack of trained scientific personnel capable of understanding the value of BIM and creating the link between digital twins and possible applications.
The ambition of CBIM is therefore to educate researchers in the development of a set of novel and disruptive BIM technologies that will automate the generation and enrichment of digital twins, improve the management, security and resilience of BIM-enabled processes, and boost the industrial uptake of BIM across sectors and disciplines by training these researchers to valorise and exploit their work. This new generation of researchers can play a key role in the widespread implementation of BIM products and processes dedicated to digitising our built infrastructure and managing our assets better to yield massive gains in sustainability, productivity and safety.
The ambition of CBIM is therefore to educate researchers in the development of a set of novel and disruptive BIM technologies that will automate the generation and enrichment of digital twins, improve the management, security and resilience of BIM-enabled processes, and boost the industrial uptake of BIM across sectors and disciplines by training these researchers to valorise and exploit their work. This new generation of researchers can play a key role in the widespread implementation of BIM products and processes dedicated to digitising our built infrastructure and managing our assets better to yield massive gains in sustainability, productivity and safety.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/860555 |
Start date: | 01-03-2020 |
End date: | 30-06-2024 |
Total budget - Public funding: | 3 888 430,56 Euro - 3 888 430,00 Euro |
Cordis data
Original description
Building Information Modelling (BIM) as a product and process enables stakeholders across the built environment sector to create digital versions of real world assets (such as buildings, bridges and tunnels). The digital versions are commonly called 'digital twins'. When placed on the cloud, the digital twins can serve as a resilient and integrated repository of all asset data throughout their life-cycle. Such a repository is a key enabler in this sector of all upcoming IT waves, such as cloud computing, data analytics, participatory sensing, and smart infrastructure. The potential benefits have attracted interest from a wide array of end-users whose interests span from early design phases to operation and asset management, and from roads and bridges to industrial off-shore facilities. This has led to aggressive market penetration in the last decade. However, the full potential of BIM is currently exploited only in a fairly narrow range of applications. This is mainly due to the lack of trained scientific personnel capable of understanding the value of BIM and creating the link between digital twins and possible applications.The ambition of CBIM is therefore to educate researchers in the development of a set of novel and disruptive BIM technologies that will automate the generation and enrichment of digital twins, improve the management, security and resilience of BIM-enabled processes, and boost the industrial uptake of BIM across sectors and disciplines by training these researchers to valorise and exploit their work. This new generation of researchers can play a key role in the widespread implementation of BIM products and processes dedicated to digitising our built infrastructure and managing our assets better to yield massive gains in sustainability, productivity and safety.
Status
SIGNEDCall topic
MSCA-ITN-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)