HEALTHYSYNAPSES | Molecular mechanisms underlying synaptic maintenance and rejuvenation

Summary
The deterioration of brain function and prevalence of dementias are some of the most striking and unfortunate consequences of ageing. Proper neuronal function relies on accurate signal transmission via synapses. While the basic cell biology of synaptic transmission is well studied, how precise activity is maintained over time remains poorly understood. Several age-dependent neurodegenerative conditions, characterized by the build-up of protein aggregates, affect synaptic function. These observations are consistent with a model where defects in the repair mechanisms that clear away defective proteins may constitute the basis for synaptic dysfunction and neurodegeneration. However, the processes that control protein rejuvenation at the synapse remain elusive. Autophagy is a process that is well suited for this purpose as it has emerged as a major means by which the cell can degrade dysfunctional components but a specific role for autophagy at the synapse has not been established. Levels in autophagy have been strongly linked to longevity and neuronal health. I hypothesize that autophagy plays an important role in synapse maintenance and that synaptic autophagy is disrupted during ageing and in neurodegenerative diseases. I will utilize a diverse set of approaches to elucidate the link between autophagy and changes in synaptic function during ageing in Drosophila. By generating novel optogenetic tools, I propose to test how the precise modulation of autophagy can influence synaptic function and whether boosting synaptic autophagy is beneficial in ageing and disease conditions. Furthermore, I will conduct a large-scale genetic screen for identifying genes regulating synaptic autophagy. Finally, I will explore the intriguing connections between synaptic proteins implicated in Parkinson’s disease and autophagy. Revealing the mechanisms underlying synaptic maintenance and health will help guide strategies for alleviating the undesirable effects of ageing.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/659030
Start date: 01-03-2016
End date: 28-02-2018
Total budget - Public funding: 160 800,00 Euro - 160 800,00 Euro
Cordis data

Original description

The deterioration of brain function and prevalence of dementias are some of the most striking and unfortunate consequences of ageing. Proper neuronal function relies on accurate signal transmission via synapses. While the basic cell biology of synaptic transmission is well studied, how precise activity is maintained over time remains poorly understood. Several age-dependent neurodegenerative conditions, characterized by the build-up of protein aggregates, affect synaptic function. These observations are consistent with a model where defects in the repair mechanisms that clear away defective proteins may constitute the basis for synaptic dysfunction and neurodegeneration. However, the processes that control protein rejuvenation at the synapse remain elusive. Autophagy is a process that is well suited for this purpose as it has emerged as a major means by which the cell can degrade dysfunctional components but a specific role for autophagy at the synapse has not been established. Levels in autophagy have been strongly linked to longevity and neuronal health. I hypothesize that autophagy plays an important role in synapse maintenance and that synaptic autophagy is disrupted during ageing and in neurodegenerative diseases. I will utilize a diverse set of approaches to elucidate the link between autophagy and changes in synaptic function during ageing in Drosophila. By generating novel optogenetic tools, I propose to test how the precise modulation of autophagy can influence synaptic function and whether boosting synaptic autophagy is beneficial in ageing and disease conditions. Furthermore, I will conduct a large-scale genetic screen for identifying genes regulating synaptic autophagy. Finally, I will explore the intriguing connections between synaptic proteins implicated in Parkinson’s disease and autophagy. Revealing the mechanisms underlying synaptic maintenance and health will help guide strategies for alleviating the undesirable effects of ageing.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)