IMFDforHIC | Improved Fluid Dynamics for Relativistic Heavy Ion Collisions

Summary
One of the fundamental questions in the field of high-energy physics is what are the properties of strongly interacting matter at high temperature or density, when one expects a transition from hadronic degrees of freedom to deconfined matter, quark-gluon plasma (QGP), where the degrees of freedom are quarks and gluons.

Experimentally such matter can be studied in relativistic heavy-ion collisions, and there are currently two major collider experiments, the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and the Large Hadron Collider (LHC) at CERN, performing such studies. Currently, there are strong indications that a small droplet of nearly thermalized QGP is indeed formed in these collisions. Extracting the properties of the matter from experimental data is, however, challenging, and requires a good understanding of the dynamical evolution of the system. With the present computational techniques it is not possible to solve the evolution directly from the theory of strong interactions, QCD, but phenomenological models are needed to describe the evolution, and determine how the properties of the matter are reflected in the experimental observables.

In order to reliably extract the properties of the formed matter, it is essential that the models describe simultaneously as many experimental observables as possible. Furthermore, it is important that the validity of the theoretical models and uncertainties associated with the used approximations and input parameters are properly addressed. The main goals of the proposed research are: (i) reduce and quantify the uncertainties in the modeling of the spacetime evolution of the system formed in the collisions, and (ii) find constraints for the unknown properties of strongly interacting matter from the currently available experimental data.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/655285
Start date: 01-01-2016
End date: 31-12-2017
Total budget - Public funding: 159 460,80 Euro - 159 460,00 Euro
Cordis data

Original description

One of the fundamental questions in the field of high-energy physics is what are the properties of strongly interacting matter at high temperature or density, when one expects a transition from hadronic degrees of freedom to deconfined matter, quark-gluon plasma (QGP), where the degrees of freedom are quarks and gluons.

Experimentally such matter can be studied in relativistic heavy-ion collisions, and there are currently two major collider experiments, the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and the Large Hadron Collider (LHC) at CERN, performing such studies. Currently, there are strong indications that a small droplet of nearly thermalized QGP is indeed formed in these collisions. Extracting the properties of the matter from experimental data is, however, challenging, and requires a good understanding of the dynamical evolution of the system. With the present computational techniques it is not possible to solve the evolution directly from the theory of strong interactions, QCD, but phenomenological models are needed to describe the evolution, and determine how the properties of the matter are reflected in the experimental observables.

In order to reliably extract the properties of the formed matter, it is essential that the models describe simultaneously as many experimental observables as possible. Furthermore, it is important that the validity of the theoretical models and uncertainties associated with the used approximations and input parameters are properly addressed. The main goals of the proposed research are: (i) reduce and quantify the uncertainties in the modeling of the spacetime evolution of the system formed in the collisions, and (ii) find constraints for the unknown properties of strongly interacting matter from the currently available experimental data.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)