MICROBRADAM | Advanced MR methods for characterization of microstructural brain damage

Summary
NMR (Nuclear Magnetic Resonance)-based approaches have affirmed as extremely valuable for applications in neurosciences. Nonetheless, the exquisite flexibility of tissue contrast in magnetic resonance imaging (MRI) that can be obtained by proper manipulation of nuclear spins still offers room for technological improvements which can be quickly expanded to clinical routine. In particular, there is extreme need of imaging methods that allow a correct assessment of microstructural damage in many brain diseases, including – but not limited to – neurodegenerative diseases. Indeed, current MRI techniques suffer from poor specificity and ultimately lack the ability to identify the microscopic biophysical and biological mechanisms related to the specific features of the pathology.
This project aims at expanding the set of MR based techniques available to neuroscientists to characterize microstructural damage, assessing the usefulness of these approaches in some specific pathologies where they offer more promise. Notably, this project aims also at establishing the increased specificity and sensitivity of newly developed and current techniques when merged in a truly multiparametric analysis approach.
This project is heavily based on networking activities for exchanging the complimentary knowledge available at the different world-class academic and commercial EU and third country sites. The novel MRI pulse sequences and data analyses approaches tested and validated during the course of the project will be available at each site of the consortium, and will be made available to the scientific community as well.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/691110
Start date: 01-11-2015
End date: 31-10-2019
Total budget - Public funding: 540 000,00 Euro - 540 000,00 Euro
Cordis data

Original description

NMR (Nuclear Magnetic Resonance)-based approaches have affirmed as extremely valuable for applications in neurosciences. Nonetheless, the exquisite flexibility of tissue contrast in magnetic resonance imaging (MRI) that can be obtained by proper manipulation of nuclear spins still offers room for technological improvements which can be quickly expanded to clinical routine. In particular, there is extreme need of imaging methods that allow a correct assessment of microstructural damage in many brain diseases, including – but not limited to – neurodegenerative diseases. Indeed, current MRI techniques suffer from poor specificity and ultimately lack the ability to identify the microscopic biophysical and biological mechanisms related to the specific features of the pathology.
This project aims at expanding the set of MR based techniques available to neuroscientists to characterize microstructural damage, assessing the usefulness of these approaches in some specific pathologies where they offer more promise. Notably, this project aims also at establishing the increased specificity and sensitivity of newly developed and current techniques when merged in a truly multiparametric analysis approach.
This project is heavily based on networking activities for exchanging the complimentary knowledge available at the different world-class academic and commercial EU and third country sites. The novel MRI pulse sequences and data analyses approaches tested and validated during the course of the project will be available at each site of the consortium, and will be made available to the scientific community as well.

Status

CLOSED

Call topic

MSCA-RISE-2015

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2015
MSCA-RISE-2015