Summary
The intestinal epithelium is the first line of defence of the mucosal immune system because it acts as a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. This barrier is mainly formed by a monolayer of specialised intestinal epithelial cells (IECs) that are crucial in maintaining intestinal homeostasis. Damage to this epithelial layer can increase intestinal permeability and lead to abnormalities in interactions between IECs, stromal cells and immune cells in the underlying lamina propria thereby disturbing the intestinal immune homeostasis, all of which are a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). Ulcerative colitis (UC) and Crohn’s disease (CD) are the two major forms of IBD, affecting an estimated 4 million people in the United States and Europe and have a rising incidence in the developing world. Recent single cell RNA seq (scRNAseq) studies of the intestine have allowed us to understand this organ in unprecedented detail, however, such studies still require the dissociation of tissue and loss of spatial resolution. With this project, I would like to take advantage of recent advances in in-situ sequencing to study intestinal tissue in toto and by combining this with the available scRNA-seq data, generate spatial maps of the intestine (GUTMAPS). The results obtained here will allow us to look at tissue composition and cell-cell interactions with unprecedented resolution in normal and diseased mucosa.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/897730 |
Start date: | 01-05-2021 |
End date: | 30-04-2023 |
Total budget - Public funding: | 187 572,48 Euro - 187 572,00 Euro |
Cordis data
Original description
The intestinal epithelium is the first line of defence of the mucosal immune system because it acts as a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. This barrier is mainly formed by a monolayer of specialised intestinal epithelial cells (IECs) that are crucial in maintaining intestinal homeostasis. Damage to this epithelial layer can increase intestinal permeability and lead to abnormalities in interactions between IECs, stromal cells and immune cells in the underlying lamina propria thereby disturbing the intestinal immune homeostasis, all of which are a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). Ulcerative colitis (UC) and Crohn’s disease (CD) are the two major forms of IBD, affecting an estimated 4 million people in the United States and Europe and have a rising incidence in the developing world. Recent single cell RNA seq (scRNAseq) studies of the intestine have allowed us to understand this organ in unprecedented detail, however, such studies still require the dissociation of tissue and loss of spatial resolution. With this project, I would like to take advantage of recent advances in in-situ sequencing to study intestinal tissue in toto and by combining this with the available scRNA-seq data, generate spatial maps of the intestine (GUTMAPS). The results obtained here will allow us to look at tissue composition and cell-cell interactions with unprecedented resolution in normal and diseased mucosa.Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)