FAAV | Design and locomotion of Bio-inspired Flapping-Wing Aerial-Aquatic robots

Summary
As our world is experiencing climate changes, we need better monitoring technologies. Since most of our planet is covered in water, sample and data collection in rivers, lakes and oceans plays a leading role in our world’s understanding. While robotics shows huge promises in this task, aquatic environments remain challenging to operate in. There is thus a strong need for light, affordable and resilient mobile robots that can operate and rapidly collect multiple measurements in these environments.
Aerial-aquatic robots are promising to combine the capability to cover large distance in air, overcoming obstacles with the ability to physically interact, measure, and sample our lakes, rivers and oceans. For that, we need to study new locomotion methods and platforms that (1) can effectively move from water to air and transition in-between (2) can cope with the highly complex and dynamic nature of our environment i.e. wind, waves (3) possess a high level of autonomy and reliability to reliably operate with climate scientists.
For this, I propose a small-scale flapping wing approach. Animals have readily shown aerial-aquatic locomotion and therefore are a tremendous source for inspiration, already demonstrating the capabilities of flapping-wing. These devices are inherently safe thanks to their low velocities, also preventing breakage, and promise to efficiently move both in air and in water.
This project will result in the first Flapping wing, Aerial-Aquatic Vehicle - or FAAV capable of carrying relevant sensory payload. This will build upon a theoretical model of this locomotion strategy and successive tests both in air and underwater, leading to an efficient, reliable device capable of sub-surface and air motion. The resulting designs will be field-tested in realistic outdoor conditions and equipped with navigation and data-collection capabilities for environmental research.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101029670
Start date: 01-12-2021
End date: 30-11-2023
Total budget - Public funding: 191 149,44 Euro - 191 149,00 Euro
Cordis data

Original description

As our world is experiencing climate changes, we need better monitoring technologies. Since most of our planet is covered in water, sample and data collection in rivers, lakes and oceans plays a leading role in our world’s understanding. While robotics shows huge promises in this task, aquatic environments remain challenging to operate in. There is thus a strong need for light, affordable and resilient mobile robots that can operate and rapidly collect multiple measurements in these environments.
Aerial-aquatic robots are promising to combine the capability to cover large distance in air, overcoming obstacles with the ability to physically interact, measure, and sample our lakes, rivers and oceans. For that, we need to study new locomotion methods and platforms that (1) can effectively move from water to air and transition in-between (2) can cope with the highly complex and dynamic nature of our environment i.e. wind, waves (3) possess a high level of autonomy and reliability to reliably operate with climate scientists.
For this, I propose a small-scale flapping wing approach. Animals have readily shown aerial-aquatic locomotion and therefore are a tremendous source for inspiration, already demonstrating the capabilities of flapping-wing. These devices are inherently safe thanks to their low velocities, also preventing breakage, and promise to efficiently move both in air and in water.
This project will result in the first Flapping wing, Aerial-Aquatic Vehicle - or FAAV capable of carrying relevant sensory payload. This will build upon a theoretical model of this locomotion strategy and successive tests both in air and underwater, leading to an efficient, reliable device capable of sub-surface and air motion. The resulting designs will be field-tested in realistic outdoor conditions and equipped with navigation and data-collection capabilities for environmental research.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)