Glueballs at BESIII | Search for the scalar glueball in a coupled channel amplitude analysis of J/psi decays with the BESIII experiment

Summary
We propose to search for the scalar glueball, an exotic particle consisting entirely of the gauge bosons of the strong interaction, the gluons, using ten billion decays of the charmonium state J/psi recently accumulated with the BESIII experiment.
The existence of glueballs has been predicted by the theory of the strong interaction, quantum chromodynamics (QCD), four decades ago. Yet, to date there has not been experimental evidence. Exploiting the unprecedented statistics of the BESIII experiment in combination with modern day high performance computing, we aim to uncover the glueball in a complex coupled channel amplitude analysis of J/psi decays into final states containing a vector particle and two pseudoscalar mesons. While radiative decays present a favourable, gluon-rich environment, massive vector mesons act as a flavour filter for an intermediate scalar resonance that subsequently decays to the two pseudoscalar mesons. Combining the information from these different decay channels in a coupled channel amplitude analysis will allow us to investigate the glueball components of the five established scalar states and by this the existence of the glueball itself. Our proposed work will, thus, address one of the pressing questions of QCD.
To achieve our goal, we will develop a framework combining state-of-the-art amplitude analysis in K-matrix formalism with high performance computing on graphics processing units and will furthermore strongly collaborate with the Joint Physics Analysis Center hosted at Indiana University.
The knowledge acquired during the outgoing phase, regarding the physics topic of the proposal, advanced aspects of amplitude analysis and a general purpose, high performance computing framework for such studies will be transferred back to Europe during the returning period. It will directly benefit ongoing research efforts at Johannes Gutenberg Universität Mainz as well as upcoming particle physics experiments like PANDA at FAIR hosted in Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/894790
Start date: 01-11-2020
End date: 31-10-2023
Total budget - Public funding: 246 669,12 Euro - 246 669,00 Euro
Cordis data

Original description

We propose to search for the scalar glueball, an exotic particle consisting entirely of the gauge bosons of the strong interaction, the gluons, using ten billion decays of the charmonium state J/psi recently accumulated with the BESIII experiment.
The existence of glueballs has been predicted by the theory of the strong interaction, quantum chromodynamics (QCD), four decades ago. Yet, to date there has not been experimental evidence. Exploiting the unprecedented statistics of the BESIII experiment in combination with modern day high performance computing, we aim to uncover the glueball in a complex coupled channel amplitude analysis of J/psi decays into final states containing a vector particle and two pseudoscalar mesons. While radiative decays present a favourable, gluon-rich environment, massive vector mesons act as a flavour filter for an intermediate scalar resonance that subsequently decays to the two pseudoscalar mesons. Combining the information from these different decay channels in a coupled channel amplitude analysis will allow us to investigate the glueball components of the five established scalar states and by this the existence of the glueball itself. Our proposed work will, thus, address one of the pressing questions of QCD.
To achieve our goal, we will develop a framework combining state-of-the-art amplitude analysis in K-matrix formalism with high performance computing on graphics processing units and will furthermore strongly collaborate with the Joint Physics Analysis Center hosted at Indiana University.
The knowledge acquired during the outgoing phase, regarding the physics topic of the proposal, advanced aspects of amplitude analysis and a general purpose, high performance computing framework for such studies will be transferred back to Europe during the returning period. It will directly benefit ongoing research efforts at Johannes Gutenberg Universität Mainz as well as upcoming particle physics experiments like PANDA at FAIR hosted in Europe.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019