THERMOH | Thermoelectricity in metal-organic perovskites: recycling waste energy heat as electricity

Summary
Thermoelectric materials convert thermal and electrical energy, and performant thermoelectric devices could be used to recover waste heat in manufacturing, cogeneration, and heavy transportation - reducing both energy requirements and greenhouse gases' footprint.
Solid-state cooldown would also change refrigeration technologies, in both efficiency and maintenance. Broadly speaking, a materials' breakthrough in thermoelectrics would have an impact on energy efficiency similar to nitride LEDs for lightning technologies.

Optimal thermoelectrics need to balance the contrasting requirements of good electrical conductivity and low thermal conductivity; nowadays the best bulk thermoelectric approaching the desired efficiency is SnSe. However, large-scale production is too expensive, and applications remain limited to niche markets.

The goal of this project is to find efficient thermoelectrics in the class of metal-organic single and double halide perovskites.
These are intensely studied for their photovoltaic efficiency, thanks also to their good electrical properties; they can be manufactured inexpensively at scale; and their lattice vibrations are very anharmonic and tunable, allowing to engineer low thermal conductivity.
Since the overall number of possible compounds is above 500, there is wide chemical tunability of their properties. However, due to both theoretical and experimental difficulties, thermoelectric efficiency has been investigated only in very few compounds. Thanks to the unique capabilities I have developed during my PhD to study from first-principles materials with very large anharmonic distortions, I will investigate the full chemical space of these perovskites in the quest for the most efficient thermoelectric. Success in the project would bring major advantages to the industrial and economic EU ecosystem, but will also cement my leadership in characterizing and designing electrical and thermal properties of far from equilibrium materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101018714
Start date: 01-01-2022
End date: 31-12-2023
Total budget - Public funding: 191 149,44 Euro - 191 149,00 Euro
Cordis data

Original description

Thermoelectric materials convert thermal and electrical energy, and performant thermoelectric devices could be used to recover waste heat in manufacturing, cogeneration, and heavy transportation - reducing both energy requirements and greenhouse gases' footprint.
Solid-state cooldown would also change refrigeration technologies, in both efficiency and maintenance. Broadly speaking, a materials' breakthrough in thermoelectrics would have an impact on energy efficiency similar to nitride LEDs for lightning technologies.

Optimal thermoelectrics need to balance the contrasting requirements of good electrical conductivity and low thermal conductivity; nowadays the best bulk thermoelectric approaching the desired efficiency is SnSe. However, large-scale production is too expensive, and applications remain limited to niche markets.

The goal of this project is to find efficient thermoelectrics in the class of metal-organic single and double halide perovskites.
These are intensely studied for their photovoltaic efficiency, thanks also to their good electrical properties; they can be manufactured inexpensively at scale; and their lattice vibrations are very anharmonic and tunable, allowing to engineer low thermal conductivity.
Since the overall number of possible compounds is above 500, there is wide chemical tunability of their properties. However, due to both theoretical and experimental difficulties, thermoelectric efficiency has been investigated only in very few compounds. Thanks to the unique capabilities I have developed during my PhD to study from first-principles materials with very large anharmonic distortions, I will investigate the full chemical space of these perovskites in the quest for the most efficient thermoelectric. Success in the project would bring major advantages to the industrial and economic EU ecosystem, but will also cement my leadership in characterizing and designing electrical and thermal properties of far from equilibrium materials.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships