GREEN-FRC | Fibre Reinforced Concrete with Recycled and Waste Materials Optimised for Improved Sustainability of Urban Projects

Summary
Reinforced doncrete urban infrastructure poses significant, insufficiently addressed, environmental challenges due to impacts from cement, natural aggregate and steel reinforcement production. This proposal focuses on integrating fibre reinforced concrete (FRC) with “green” concretes produced with waste and recycled materials. The large scatter of current FRC characterisation tests leads to conservative structural design and the incomplete understanding of waste and recycled materials’ effects on “green” concrete properties leads to quality control challenges. As a result, existing standards and design codes are not comprehensive and the market uptake of these concretes is low. This action proposes a synergy of FRC and “green” concretes to achieve fully sustainable urban infrastructure. The action will develop and optimise structural-grade “green” FRC (G-FRC) with different recycled and waste materials for maximising sustainability; develop novel G-FRC characterisation tests with reduced result scatter; formulate performance-based indicators for recycled and waste materials used in G-FRC to facilitate quality control; and develop design guidelines for G-FRC structures with full-scale structural test verification and in-situ application, within 24 months of project duration. The expertise of the experienced researcher (ER), Dr. Nikola Tošić, and the supervisor, Dr. Alberto de la Fuente Antequera, are fully complementary and will enable them to develop novel research techniques through a two-way knowledge transfer and comprehensive training activities for the ER. The project will engage Smart Engineering Ltd for industrial application of project results. Comprehensive dissemination and communication measures focusing on different target audiences are formulated. A carefully thought through and detailed work plan, resource use, and contingency measures for risk mitigation have been developed to ensure a smooth and timely project implementation with maximised impact.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/836270
Start date: 03-02-2020
End date: 02-02-2022
Total budget - Public funding: 160 932,48 Euro - 160 932,00 Euro
Cordis data

Original description

Reinforced doncrete urban infrastructure poses significant, insufficiently addressed, environmental challenges due to impacts from cement, natural aggregate and steel reinforcement production. This proposal focuses on integrating fibre reinforced concrete (FRC) with “green” concretes produced with waste and recycled materials. The large scatter of current FRC characterisation tests leads to conservative structural design and the incomplete understanding of waste and recycled materials’ effects on “green” concrete properties leads to quality control challenges. As a result, existing standards and design codes are not comprehensive and the market uptake of these concretes is low. This action proposes a synergy of FRC and “green” concretes to achieve fully sustainable urban infrastructure. The action will develop and optimise structural-grade “green” FRC (G-FRC) with different recycled and waste materials for maximising sustainability; develop novel G-FRC characterisation tests with reduced result scatter; formulate performance-based indicators for recycled and waste materials used in G-FRC to facilitate quality control; and develop design guidelines for G-FRC structures with full-scale structural test verification and in-situ application, within 24 months of project duration. The expertise of the experienced researcher (ER), Dr. Nikola Tošić, and the supervisor, Dr. Alberto de la Fuente Antequera, are fully complementary and will enable them to develop novel research techniques through a two-way knowledge transfer and comprehensive training activities for the ER. The project will engage Smart Engineering Ltd for industrial application of project results. Comprehensive dissemination and communication measures focusing on different target audiences are formulated. A carefully thought through and detailed work plan, resource use, and contingency measures for risk mitigation have been developed to ensure a smooth and timely project implementation with maximised impact.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018