BACCO | Burning on Accreting Compact Objects

Summary
Neutron stars, black holes and white dwarfs, collectively known as compact objects, are born when normal stars die. Besides being of broad interest in astronomy, compact objects offer unique tools for the study of nuclear physics and cosmology. The density in the core of neutron stars exceeds that of an atomic nucleus, which makes them the densest stable objects that we can observe in the Universe. When accreted matter falls onto the surface of a neutron star or a white dwarf, it is piled up and compressed, becoming fuel for nuclear reactions. Despite significant progress during the last decades, fundamental questions about the physics of neutron stars, white dwarfs and thermonuclear burning remain unanswered. During this Fellowship, the Researcher will compare recent burst discoveries with numerical simulations performed in collaboration with the Host Group, in order to answer crucial open questions at the crossroads between compact objects and thermonuclear burning. The multi-disciplinary approach of this project, which combines X-ray astronomy, nuclear physics and hydrodynamic simulations, will provide the Researcher with new and valuable skills.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/702638
Start date: 01-04-2017
End date: 31-03-2019
Total budget - Public funding: 158 121,60 Euro - 158 121,00 Euro
Cordis data

Original description

Neutron stars, black holes and white dwarfs, collectively known as compact objects, are born when normal stars die. Besides being of broad interest in astronomy, compact objects offer unique tools for the study of nuclear physics and cosmology. The density in the core of neutron stars exceeds that of an atomic nucleus, which makes them the densest stable objects that we can observe in the Universe. When accreted matter falls onto the surface of a neutron star or a white dwarf, it is piled up and compressed, becoming fuel for nuclear reactions. Despite significant progress during the last decades, fundamental questions about the physics of neutron stars, white dwarfs and thermonuclear burning remain unanswered. During this Fellowship, the Researcher will compare recent burst discoveries with numerical simulations performed in collaboration with the Host Group, in order to answer crucial open questions at the crossroads between compact objects and thermonuclear burning. The multi-disciplinary approach of this project, which combines X-ray astronomy, nuclear physics and hydrodynamic simulations, will provide the Researcher with new and valuable skills.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)