signalling dynamics | Bridging biophysics and cell biology: The role of G protein-coupled receptor conformations in signalling

Summary
G protein coupled receptors (GPCRs) are a class of membrane receptors that transmits extracellular signals into the cell. They can be activated by a diverse set of ligands including small molecules, hormones, neurotransmitters or photons and are targeted by a third of currently marketed drugs. Endogenous ligands and drugs may exhibit different efficacy profiles, ranging from full activation to complete inactivation of a signalling pathway. The key to the selective interaction with signalling partners in response to ligand binding lies in the conformational flexibility of the membrane receptors. Previous research has extensively studied the three-dimensional structures of GPCRs and their signalling. However, the link between active conformations and signalling is still missing.
In the proposed project, first I will use exhaustive single-point mutagenesis coupled to functional assays to determine how the sequence and secondary structure of GPCRs contribute to signaling. Second, biophysical techniques studying protein conformations will help us to understand the connection between conformations and signalling outcome. These techniques give insights into the conformational fingerprints of the receptor. The link to signalling will be achieved by biasing the receptor towards a selected signalling partner either though addition of the selected signalling partner or the insertion of specific mutations tested in the first part of the project. Finally, I will use computational techniques to compare the activation of signalling partners in different GPCRs.
With my research I hope to improve our understanding of the molecular basis of membrane protein function and contribute to the development of strategies for the design of more specific drugs with fewer side effects.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/844622
Start date: 01-01-2020
End date: 31-12-2022
Total budget - Public funding: 271 732,80 Euro - 271 732,00 Euro
Cordis data

Original description

G protein coupled receptors (GPCRs) are a class of membrane receptors that transmits extracellular signals into the cell. They can be activated by a diverse set of ligands including small molecules, hormones, neurotransmitters or photons and are targeted by a third of currently marketed drugs. Endogenous ligands and drugs may exhibit different efficacy profiles, ranging from full activation to complete inactivation of a signalling pathway. The key to the selective interaction with signalling partners in response to ligand binding lies in the conformational flexibility of the membrane receptors. Previous research has extensively studied the three-dimensional structures of GPCRs and their signalling. However, the link between active conformations and signalling is still missing.
In the proposed project, first I will use exhaustive single-point mutagenesis coupled to functional assays to determine how the sequence and secondary structure of GPCRs contribute to signaling. Second, biophysical techniques studying protein conformations will help us to understand the connection between conformations and signalling outcome. These techniques give insights into the conformational fingerprints of the receptor. The link to signalling will be achieved by biasing the receptor towards a selected signalling partner either though addition of the selected signalling partner or the insertion of specific mutations tested in the first part of the project. Finally, I will use computational techniques to compare the activation of signalling partners in different GPCRs.
With my research I hope to improve our understanding of the molecular basis of membrane protein function and contribute to the development of strategies for the design of more specific drugs with fewer side effects.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018