MacSeNet | Machine Sensing Training Network

Summary
The aim of this Innovative Training Network is to train a new generation of creative, entrepreneurial and innovative early-stage researchers (ESRs) in the research area of measurement and estimation of signals using knowledge or data about the underlying structure. With its combination of ideas from machine learning and sensing, we refer to this research topic as “Machine Sensing”. We will train all ESRs in research skills needed to obtain an internationally-recognized PhD; to experience applying their research a non-Academic sector; and to gain transferrable skills such as entrepreneurship and communication skills. We will further encourage an open “reproducible research” approach to research, through open publication of research papers, data and software, and foster an entrepreneurial and innovation-oriented attitude through exposure to SME and spin-out Partners in the network. In the research we undertake, we will go beyond the current, and hugely popular, sparse representation and compressed sensing approaches, to develop new signal models and sensing paradigms. These will include those based on new structures, nonlinear models, and physical models, while at the same time finding computationally efficient methods to perform this processing. We will develop new robust and efficient Machine Sensing theory and algorithms, together methods for a wide range of signals, including: advanced brain imaging; inverse imaging problems; audio and music signals; and non-traditional signals such as signals on graphs. We will apply these methods to real-world problems, through work with non-Academic partners, and disseminate the results of this research to a wide range of academic and non-academic audiences, including through publications, data, software and public engagement events.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/642685
Start date: 01-01-2015
End date: 31-12-2018
Total budget - Public funding: 3 866 329,44 Euro - 3 866 329,00 Euro
Cordis data

Original description

The aim of this Innovative Training Network is to train a new generation of creative, entrepreneurial and innovative early-stage researchers (ESRs) in the research area of measurement and estimation of signals using knowledge or data about the underlying structure. With its combination of ideas from machine learning and sensing, we refer to this research topic as “Machine Sensing”. We will train all ESRs in research skills needed to obtain an internationally-recognized PhD; to experience applying their research a non-Academic sector; and to gain transferrable skills such as entrepreneurship and communication skills. We will further encourage an open “reproducible research” approach to research, through open publication of research papers, data and software, and foster an entrepreneurial and innovation-oriented attitude through exposure to SME and spin-out Partners in the network. In the research we undertake, we will go beyond the current, and hugely popular, sparse representation and compressed sensing approaches, to develop new signal models and sensing paradigms. These will include those based on new structures, nonlinear models, and physical models, while at the same time finding computationally efficient methods to perform this processing. We will develop new robust and efficient Machine Sensing theory and algorithms, together methods for a wide range of signals, including: advanced brain imaging; inverse imaging problems; audio and music signals; and non-traditional signals such as signals on graphs. We will apply these methods to real-world problems, through work with non-Academic partners, and disseminate the results of this research to a wide range of academic and non-academic audiences, including through publications, data, software and public engagement events.

Status

CLOSED

Call topic

MSCA-ITN-2014-ETN

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2014
MSCA-ITN-2014-ETN Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN)